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Cohesive Zone Models and Fracture

C. Y. Hui1, A. Ruina1, R. Long1, and A. Jagota2

1Department of Mechanical and Aerospace Engineering,
Cornell University, Ithaca, New York, USA
2Department of Chemical Engineering and Bioengineering Program,
Lehigh University, Bethlehem, Pennsylvania, USA

Basic concepts on cohesive models and their usage in fracture are reviewed.

These included potential based cohesive zone models and the concept of an aniso-
tropic failure surface. Some new results are presented for history-dependent
cohesive zone models. In particular, a class of cohesive zone models where damage
is represented by a state variable which evolves according to loading history is stud-
ied. The connection between cohesive zone model and crack nucleation is explored.
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1. INTRODUCTION

There are at least two broad approaches to the mechanics of fracture.
The first, initiated by Griffith, treats the crack-tip as infinitely sharp,
with the result that stress and strain fields generally diverge at that
point but a finite energy release rate can often be found. Crack equi-
librium and stability can then be written by equating either the
pre-factor on singular stress fields, the stress intensity factor, or the
energy-release-rate, to material properties that describe resistance
to fracture, e.g., the fracture toughness. In the second approach, one
introduces a traction-separation model, characteristic of the material
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and usually with finite tractions, at the crack-tip. As a consequence,
stresses everywhere remain bounded and the sharp crack tip is
replaced by a cohesive zone. In several cases, e.g., linear-elastic mate-
rials where the cohesive zone is small compared with any other dimen-
sion, the two approaches provide asymptotically identical criteria for
crack equilibrium and stability.

Since their introduction by Barenblatt in 1962 [1], cohesive zone
models have been used to study a wide variety of physical phenomena,
for example, crack growth along a prescribed plane in elastic-plastic
and viscoelastic materials [2–7], adhesive contact of non-conforming
surfaces [8–11], frictional sliding and earthquakes [12–14], sintering
of polymeric particles [15], crazing in polymer glass [16–20], adhesion
[21–23], fiber bridging and debonding in composite materials [24–29],
fracture of adhesive joints [30], and stability of interfaces [19,31–34].

Before 1987, the usage of the cohesive zone model had been prim-
arily restricted to the study of failure of preexisting cracks either in
the opening or sliding mode, but not both. To study fracture in multi-
phase materials with complicated geometries, it is necessary to couple
the shear and normal deformations in the cohesive model. Such an
approach was used by Needleman to study the nucleation of voids from
inclusions or second-phase particles in metals or composites [29]. This
work spurred a large number of studies in the area of interface frac-
ture and cohesive modeling in multiphase materials, see for example
[35–44] and the references therein. In the past 10 years, cohesive zone
models have been employed to study fragmentation [44–49] and crack
initiation and growth in rate dependent materials [50]. One reason for
their great popularity is that, in the computational setting, the
cohesive zone model approach can be implemented in a very general
manner, for example, allowing simulation of multiple interacting
cracks that nucleate, grow, and heal spontaneously in a material as
dictated by the history of its loading.

Works on cohesive zone models fall roughly into two categories. In
the first, the cohesive zone model is used as a convenient theoretical
substitute for, say, critical fracture toughness, to model material fail-
ure. For example, it can be used to study how cracks nucleate and
grow in a structure. This relies on our ability to establish a relation-
ship between interface fracture toughness and the cohesive para-
meters. With few exceptions, in such cases cohesive zone models are
phenomenological in nature. In other words, there is no direct connec-
tion between the mathematical models and the underlying physical
separation=sliding processes. Typically, a mathematical form of the
cohesive zone model is assumed. For example, in Needleman’s model
[29,40], the cohesive traction is assumed to be the gradient of a work
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potential. The parameters in these models may not bear any relation
to the actual failure processes in the molecular or micro-structural
scale. As alluded to earlier, in certain circumstances this last fact is
of little consequence. For example, say we wish to model crack propa-
gation in a linearly elastic material subjected to small strains in which
the cohesive zone remains small compared with all relevant dimen-
sions (small scale yielding). Then, all that matters is that the work
of separation in the cohesive zone model be matched to the fracture
toughness. That is, other details such as the maximum cohesive stress,
characteristic cohesive zone opening, and the particular functional
form relating these two quantities are not of consequence. However,
if one introduces nearly any deviation from these ideal conditions,
e.g., inelasticity of material response, then the details of the cohesive
zone model usually do matter significantly.

Cohesive parameters can sometimes be determined by fitting
numerical simulations of fracture tests to experimental data. The hope
is that extracted parameters represent material properties and can be
used to model fracture of the same material under different loading
conditions. However, this (usually implicit) assumption is often not
satisfied and, as a consequence, the cohesive parameters are not
unique; their values depend on specimen geometry and loading his-
tory. In this approach, the best possible outcome is that parameters
determined based on different loading conditions or geometries are
confined to small regions in the parameter space. This approach has
been successfully applied to predicting interface fracture in a class
of specimens. For example, Yang et al. [51,52] described how Mode I
and Mode II cohesive zone parameters can be extracted from fracture
testing of plastically deformed adhesive joints. Andena et al. [53]
describe in some detail how cohesive zone parameters have been
obtained for fracture in polybutene by using three different specimens
(compact tension, single edge notched bending, and circumferentially
notched tensile configurations). Zhou et al. [54] have similarly shown
how cohesive zone parameters extracted from one test can be used to
simulate another. Using cleavage of mica, Hill et al. [55] have shown
how the cohesive stress and work of fracture can be determined inde-
pendently from a single experiment. A brief review and discussion of
cohesive zone models for polymer interfaces can be found in
Rahul-Kumar et al. [43].

When interfacial deformations are restricted to a single mode,
attempts have been made to deduce the mathematical form of the
cohesive zone model from micromechanical modeling. An example of
such an approach is the study of fiber bridging in fiber-reinforced
composites [25,26]. These micromechanical-based models involve a
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number of unknown material parameters, some of which can be
inferred from material characterization tests. For example, the bridg-
ing law due to fiber pull-out may involve the interfacial shear strength
of the fiber=matrix interface. This parameter can be determined by
performing a single filament composite test. An exact analysis of this
test can be found in [56]. A well-developed example of this approach is
the modeling of crazes in glassy polymers. The crazed region can
be treated as a cohesive zone. A large number of independent
experiments have been carried out to measure characteristics of the
microstructure of crazes, the traction on the craze-bulk interface,
the opening displacements of the craze interface, the size and struc-
ture of the drawing zone, etc. For details, see [57,58] and references
therein. These experimental approaches are supplemented by the
development of physically based theory and molecular dynamics simu-
lations to model the micromechanics of crazing, resulting in a close
connection between cohesive and molecular parameters [59–61]. These
simulations and theories have been checked against experiments with
different geometries and material properties. For example, the poly-
mer or the molecular weight of the polymer can be altered, or different
molecular connectors on the interface between the polymer and the
substrate can be used to study the effect on craze breakdown [62].
For air crazes, our current knowledge is sufficiently complete that
one can create a cohesive zone model without adjustable parameters.

Therefore, in addition to the computational and modeling advan-
tages cited earlier, a great strength of the cohesive zone approach is
that it provides a link between physical models for crack-tip damage
processes and the mechanics of the larger structure. Unfortunately,
the painstaking work of representing and validating crack-tip physics
with cohesive zone models has been carried out in only a few cases.
Just as classical force field packages, such as those used in molecular
dynamics simulations, capture a large range of interatomic and inter-
molecular interactions, one can envisage the development of an entire
family of validated cohesive material models that could be collected
into an analogous ‘‘force field.’’

A different approach is to uncover directly the constitutive descrip-
tion of surface decohesion=sliding by experiment. In general, these
experiments are difficult to carry out since the stress and the defor-
mation in the sample has to be spatially homogenous. Since cohesive
zone models are often used to study crack nucleation and stability of
interfaces, variation of the interfacial traction as interfacial slip or
opening progresses, even if very small, is of primary importance. Fail-
ure of an interface is associated with decreasing traction as interfacial
slip or opening progresses, i.e., interfacial softening. Measuring the
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response of the interface in the softening regime requires the design of
very stiff loading devices. Examples of such approaches can be found
in the rock friction literature, see for example [12, 13] and the refer-
ences within.

The second category of cohesive modeling is concerned mostly with
the development of computational schemes and numerical implemen-
tation and is not the focus of this work. References on these subjects
can be found in [63].

In comparison with the large number of works in the two categories
mentioned above, far less attention has been paid to understanding
cohesive models from the point of view of constitutive modeling. For
example, there have been very few discussions on the deficiencies and
limitations of cohesive zone models currently used in the literature (a
recent exception is the work by Jirasek and Zimmermann [42]). The con-
cept of interfacial displacement or displacement discontinuity in the con-
tinuum description is often taken for granted. For example, it is often
assumed that the interfacial displacements that enter into the constitut-
ive model are identical to the experimental interfacial separations,
whereas in reality these two quantities can differ significantly.

The plan of this paper is as follows: in Section 2 we attempt to give a
clear definition of interfacial displacement. We also consider some
widely used cohesive zone models and discuss their deficiencies. We
also introduce the concept of a potential or yield surface in traction
space. Here we attempt to draw an analogy between cohesive zone
models and classical plasticity. Section 3 introduces the concept of a
failure surface which may resolve some of the deficiencies highlighted
in Section 2. In Section 4 we consider a state variable cohesive zone
model with particular focus on rate independent models. Some conse-
quences of these models in mixed mode fracture problems are dis-
cussed. Section 5 discusses the stability of cohesive zone interfaces
and its connection to crack nucleation. We end with summary and
discussion in Section 6.

2. CONSTITUTIVE RELATION OF COHESIVE ZONE MODEL

2.1. Continuum ‘‘Point’’ on an Interface

The existence of a constitutive relation requires the concept of a con-
tinuum ‘‘point’’. A continuum ‘‘point’’ is a region of the interface
between the solids with a characteristic dimension, P, in the plane
of the interface. It may include a thin layer of the adjacent solids of
characteristic size, H, in a direction normal to the interface. The size
of P and H must be negligible in comparison with all relevant
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geometric dimensions, L, in the continuum problem. Figure 1 shows a
region of a solid that includes a planar interface that may undergo
opening or slip. The point is assumed to include many microscopic fea-
tures (see Fig. 2 as an example). These microscopic features may
include molecular chain scission or pull-out in polymers, asperities
that deform and fracture in frictional sliding, micro-void formation,

FIGURE 1 Schematic drawing of a continuum point. L is a characteristic
length scale of the continuum problem (e.g., specimen size, crack length,
etc.). P and H denote the size scale of the continuum point. The continuum
stress and strain fields are approximately homogeneous over the length scales
P and H.

FIGURE 2 An example of the micro-structures inside a craze. P, H denote the
size of the continuum point.
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growth and coalescence in metals and elastomers, drawing and forma-
tion of craze fibrils in polymer glasses, slipping at the fiber=matrix
interface, and breaking of fibers and fiber pull-out in fiber-reinforced
composites. Smaller features can also be represented by the point, e.g.,
intermolecular or interatomic interactions such as Van der Waals, hydro-
gen, and ionic bonding. In other words, these micro-nano-mechanical
elements have a wide range of characteristic sizes and a continuum point
may include many of these mechanisms. Let m be the characteristic size
of these elements in the plane of the interface and h be their character-
istic size normal to the interface. For example, m, h� Á̊ for interatomic
interactions, m�nm for craze fibrils and dislocations, m� lm or higher
for voids, h� lm for crazes, and h�mm for fiber pull-out. Thus, for the
continuum description to be legitimate, a hierarchy of size scales is
implicit, such that L>>P>>m, h. In addition, over a wide range of
length scales, the constitutive relation must be independent of the size
of the continuum point.

In Barenblatt’s theory, separation of two surfaces is opposed by
interatomic or intermolecular forces so that the traction across the
cohesive zone is the gradient of an interatomic potential. In this case,
m, h� Á̊, and the value of fracture toughness approaches twice the
surface energy. For most material systems this theory is too simplistic,
since, even in nearly ideal-brittle materials such as glass and mica, the
fracture toughness is much higher than twice the surface energy. This
is because, for most materials, the interatomic forces required for sep-
aration are much higher than those required to initiate some form of
damage (e.g., cavitation, flow, or crazing). Therefore, the material
invariably suffers some form of inelastic deformation near the crack
tip, resulting in much greater energy dissipation. Even in the few
cases where fracture toughness does indeed equal twice the surface
energy, as in separation of carefully-prepared elastomers [64], the
cohesive stress is much smaller than would be expected on the basis
of intermolecular interactions between continuous bodies [65]. This
fact is typical; the characteristic stress (displacement) to open an
interface is much smaller (larger) than predicted on the basis of inter-
molecular forces.

Consider, for example, the fracture of rubber. Based on the typical
number of chains (� 1018=m2) that cross a fracture plane and the
energy needed to break a chemical bond (� 400 kJ=mole), the surface
energy should be about 1–2 J=m2 [66]. Experimental values of fracture
energies, however, range from 10 to 1000J=m2 [66]. The stress needed
to completely separate an interface with energy of a few J=m2 based on
short-range intermolecular forces (acting over a few nm) has values on
the order of GPa, which is at least three orders of magnitude higher
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than the small strain elastic modulus (E� 1MPa) of a typical elasto-
mer. Crack growth can occur by at least two mechanisms: in the first,
the highly stretched polymer chains directly ahead of the crack tip
break. As pointed out by Lake and Thomas [66], since all the bonds
in a chain are stretched to their breaking point, when one of the bonds
breaks, the entire chain relaxes to zero load and thus all of the stored
elastic energy in the chain is lost. The energy dissipation per molecule
is thus proportional to number of bonds, n, in a chain between cross-
links. (Since the number of chains crossing an interface scales as the
n�1=2, the energy per unit area increases as n1=2.) For long chains,
the characteristic interfacial displacement required to separate the
interface is on the order of microns. Cracks can also grow by linking
of microvoids ahead of the crack tip. In elastomers, a typical stress
for rapid growth of micro-voids is on the order of E (� 1MPa), much
smaller than the stress required to break bonds. In addition, blunting
of the crack tip suggests that the effective size and the thickness of the
cohesive zone can be much greater than atomic dimensions. To a lesser
extent, this is also true in metallic systems, where the theoretical
cohesive stress based on intermolecular potential is typically much
higher than the yield stress. For crazes in polymers, the thickness of
the cohesive zone is typically on the order of microns. The thickness
of the continuum point in the bridging zone of fiber-reinforced
composites can be on the order of millimeters.

2.2. Definition of Interfacial Displacements

The discussion above shows that the thickness, H, of an interface con-
tinuum point can be much larger than m and h, which are character-
istic length scales of the microstructure. The following question
naturally arises: what is an appropriate definition of interfacial dis-
placement? The inset in Fig. 1 shows two material points on opposite
sides of a planar interface separated by a distance H>>h, sufficiently
large that all deviation from bulk deformation is confined within the
two points. Let u be the separation between these two material points
with component u1 normal to the interface and components u2 and u3

in its plane. Let uo be the separation that would be predicted between
these two points based on bulk deformation of the solids if subjected to
the same remote state of stress. Then, we define the opening displace-
ment d=u-uo as the displacement of the cohesive zone and compo-
nents d1 as the normal and d2, d3 as the slip displacements. That is,
the cohesive zone displacements are the excess relative to that which
would be predicted by the bulk deformation of the solids. (We pick H
to be sufficiently large compared with h but still sufficiently small
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compared with L so that stresses and strains locally are homogeneous
prior to introduction of the interface and so that the displacements, so
defined, are independent of the choice of H. For the special case where
the interface deformation is highly localized, such as that of a craze,
H can be taken to be h.)

This definition implies that the opening or slip displacements mea-
sured in the laboratory (i.e., in a fracture test) can be substantially dif-
ferent from the opening or slip displacements used in the cohesive
model. As an example, consider crazes, which are planar crack-like
defects in glassy polymers. However, unlike cracks, crazes are load-
bearing, since their surfaces are bridged by many fine fibrils with
diameters ranging from 5 to 30 nm (see Fig. 2). As the craze grows
in thickness this fibril structure may break down, leading to large
voids which eventually grow to become cracks of a critical size. Experi-
ments have conclusively demonstrated that crazes in air increase in
thickness by drawing material from a thin (�nm), strain-softened
layer at the craze-bulk interface into the fibrils. Since the fibril struc-
ture cannot withstand shear, d2¼ d3� 0. As a result, the direction of
the tensile stress is always normal to the craze surface and the craze
thickens primarily in the direction of its fibrils.

To illustrate the procedure of computing the interfacial displace-
ment, d1, for a craze, consider Fig. 3a,b where a comparison is made
between the normal displacement of two material points induced by
the bulk deformation of the polymer (elastic or inelastic) and the final
deformation of the same material points after the craze has formed.
The separation of these two points due to homogeneous bulk defor-
mation is denoted by Ho. The separation of these points after the craze
has formed is H. Let qo be the density of the homogenously deformed
bulk material in Fig. 3a, and let q be the density of the craze and bulk

FIGURE 3 (a) Continuum point before crazing occurs. The craze material is
highlighted by the dotted lines. (b) After crazing, the material inside the box
highlighted in (a) increases its thickness to h and becomes less dense. The
two black dots denote two points A, B before and after crazing.
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material in Fig. 3b. In general, q is a function of the distance along the
y axis (the y direction is perpendicular to the craze interface), and the
planar interface is the xz-plane. Since one can reasonably assume that
there is no excess lateral strain due to crazing, we have

qoHo ¼
ZH
0

qðyÞdy � �qqH ð1Þ

by mass conservation, where �qq is the average density of the crazed
material. The interface displacement is, by definition,

d1 � H �Ho: ð2Þ

Substituting Eq. (1) into Eq. (2), we have

d1 ¼ H 1 � �qq
qo

� �
: ð3aÞ

For crazes, the craze-bulk interface is very sharp, [�10 nm, so a con-
venient choice is to select the material points so that H¼h, where h
is the visible thickness of the craze (e.g., in a transmission electron
micrograph]. The interface displacement is

d1 ¼ h 1 � qc
qo

� �
; ð3bÞ

where qc is the average mass density in the craze1. The above definition
of d1 is independent of the distance Ho between the twomaterial points as
long as Ho is less than L and large enough to include all the details of fib-
rillation. This definition is similar to an early expression of Lauterwasser
and Kramer [67]. For crazes in polystyrene, q/qo� 0.2 so that the con-
tinuum normal displacement is about 80% of the visible craze thickness.

In a very different application, we point out that there is some ambi-
guity in the published literature on the appropriate definition of inter-
face displacement to model crack bridging in fiber-reinforced
composites. As pointed out by McCartney [28], the continuum-opening
displacement in the bridging model is the additional displacement of a
remote material point of a cracked composite (i.e., the matrix is fully

1Since the effective Young’s modulus of the crazed material, Ec, is less than that of
the bulk polymer, E, we should include the difference in elastic deformation, a factor
of hrc E�1

c � E�1
� �

in Eq. (3b), where rc is the crazing stress. However, since rc=E is
on the order of 10�3, this factor is much smaller than the RHS of Eq. (3b), and so it
can be neglected.

10 C. Y. Hui et al.
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cracked) over that which would result in an uncracked composite
under the same loading. This procedure is entirely consistent with
our definition of interfacial displacement.

Many cohesive zone models have an initial hardening branch, that
is, the interfacial displacements are non-zero for any applied traction,
no matter how small. A very simple example of a linear hardening
model is to consider a thin layer of soft elastic material of uniform
thickness, h, perfectly bonded between two identical homogeneous,
isotropic, linear elastic plates with Young’s modulus, E, and Poisson’s
ratio, v. For simplicity, let us consider a plane stress problem (e.g., a
thin sheet of material between two identical plates). Let EL and vL
denote the Young’s modulus and Poisson’s ratio of the layer. If h is
much smaller than the crack tip radius, this layer can be treated as
a cohesive zone. In the absence of the layer, the two points A, B (see
Fig. 4) displace by the amount of

rHo=E; ð4aÞ

where r is the normal stress applied at distances far from the layer
(see Fig. 3). Assuming that the lateral contraction of the soft layer is
the same as that of the two large identical plates, the displacement
of A, B in the presence of the layer is

r
E
ðHo � hÞ þ rh

EL
1 � v2

L 1 � ELv

EvL

� �� �
: ð4bÞ

FIGURE 4 A thin elastic layer sandwiched between two linearly elastic
plates.
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By definition, the excess displacement or opening interface dis-
placement, d, is the difference between Eqs. (4b) and (4a), that is,

d ¼ rh
EL

1 � v2
L 1 � ELv

EvL

� �� �
� rh

E
: ð4cÞ

Note that the result is independent of Ho and the interface displace-
ment vanishes if E¼EL. This simple model has a linear ‘‘hardening’’
branch where the interface displacement, d, is directly proportional
to the normal traction, r. The hardening branch is typically followed
by a softening branch, where r decreases with increasing d. The beha-
vior of the softening branch depends on the failure characteristic of the
layer. For example, if the layer fails in a brittle way (e.g., by the propa-
gation of a single crack), then softening occurs very rapidly. However,
if the layer fails by cavitation2, then the range of d where softening
occurs can be very large.

As demonstrated by the above example, our definition of interfa-
cial displacement implies that, at least in homogeneous materials,
inter-atomic models of decohesion should have no linear hardening
branch since the linear elastic behavior of the continuum point is
indistinguishable from the bulk behavior. However, cohesive models
for the interface between two materials can have a hardening
branch.

2.3. Variables in Cohesive Zone Model

The primary mechanical variables of interest are the normal trac-
tion, T1 (traction component in the direction normal to the inter-
face), the shear tractions T2, T3, and the interface displacement
vector, ~dd ¼ d1; d2; d3ð Þ defined above. To define these displacements
and tractions we need first to define a cohesive plane. A full mech-
anical description could conceivably include other deformation vari-
ables such as the relative rotation of the two surfaces and the
in-plane strain in the two solids. For example, the nucleation and
growth of micro-voids ahead of the crack tip can be significantly
affected by the in-plane strain, especially if crack blunting occurs,
since void nucleation and growth are known to be very sensitive
to triaxiality. In large deformation, the traction, ~TT, should be inter-
preted as the Cauchy traction.

2Cavitation is more likely to occur if the layer were loaded in plane strain and
E>>EL, nL�0.5, for example, if the plates were blocks of glass and the layer were
replaced by a thin sheet of rubber or soft elastic gel.

12 C. Y. Hui et al.
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A reasonably general constitutive model for the interface or cohes-
ive zone model can be written in the form of a relation as follows:

G ~TTðtÞ;F ~ddðt0Þ;�1 � t0 � t
h in o

¼ 0: ð5aÞ

In the above, F is a vector function which depends on the history of
the displacement vector that is related to the traction vector
~TT � ðT1;T2;T3Þ through the vector relation

G ~TT;F
� �

¼ 0: ð5bÞ

2.4. Definition of Cohesive Zone, Cohesive Zone Tip, and
Crack Tip

The cohesive zone, cohesive zone front, and crack front can be defined in
a formal way. At any time t, the cohesive zone consists of all points on
the interface such that d � ~dd

			 			 > 0. A cohesive zone front is the boundary
points (in general a space curve) between two adjacent regions on the
interface where at least one of the interface displacements goes from
identically zero in one region to having non-zero values in the other. This
definition allows for multiple cohesive zone fronts within a cohesive zone
and its boundaries. For example, it is possible to have part of the cohesive
zone deform in a pure opening mode (or in a pure sliding mode), whereas
the rest of the cohesive zone deforms in both opening and sliding mode.
(An example will be given later.) In general, true cohesive zone front(s)
exist only for constitutive models that allow di¼ 0 for some i and for some
nonzero traction histories. In the absence of crack healing or internal
fluid pressure, we define a crack zone as the part of the interface that
belongs to a cohesive zone; however, material points in this region can
bear no load for the current, and all possible future, configurations, that
is ~TT � 0 for all t0 � t. A crack front is defined as the boundary points
between a crack zone and a cohesive zone. We will illustrate these ideas
shortly with some simple examples.

Although it is possible to construct examples where the displace-
ment normal to the interface is negative (e.g., a soft interface layer
under compression), it is common to enforce d1� 0 at all times. In this
work, we will adopt the convention that contact occurs when d1¼ 0,
and friction force must be taken into account if T1< 0. In cohesive zone
models, preexisting cracks or cracks that are artificially introduced
into the interface which do not satisfy a fracture criterion consistent
with the cohesive zone model, cannot be considered as part of the inter-
face and, hence, cannot be described by the model. Descriptions of
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these cracks must be captured by boundary conditions. We will call
these types of cracks preexisting cracks.

Figure 5 shows some simple examples where T2¼T3¼ d2¼ d3¼ 0,
that is, the interface is constrained to open in the direction of its nor-
mal. The cohesive zone tip and the crack tip are well-defined for the
cohesive zone model in Fig. 5a. At the cohesive zone tip, the normal
traction T¼T1 is exactly r0> 0. Crack tips are defined by the con-
ditiond¼ dc. Note that the type of cohesive law drawn in Fig. 5a
implies that within the cohesive zone is a region subjected to tractions
that exceed ro. As pointed out by Elices et al. [68], adjacent regions in
the bulk should also have cohesive zones. Therefore, multiple cohesive
zones can exist in this model.

2.5. Constitutive Relation Based on Potential Function

A widely used constitutive relation is the reversible cohesive zone
model introduced by Needleman [29,30,40]. Let a displacement
~dd ¼ d1; d2; d3ð Þ be imposed on a continuum point. Denote the resulting
traction on this point by ~TT ¼ T1;T2;T3ð Þ. The work done by the cohes-
ive traction per unit area from ~dda to ~ddb is

Z ~ddb

~dda

~TT � d~dd: ð6Þ

FIGURE 5 (a) A cohesive zone model where cohesive zone tips and crack tips
are well defined. (b) A cohesive zone model where neither the cohesive zone
tips nor crack tips exist.

14 C. Y. Hui et al.
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This integral is path-dependent unless ~TT is the gradient of a poten-
tial or work function Uð~ddÞ, i.e.,

Ti ¼ U;i � @U=@di: ð7Þ

Equation (7) is the fundamental equation governing the work function
approach. The work function, Uð~ddÞ¼ constant, represents a family of
surfaces in the space of cohesive-opening displacements. Geometri-
cally, Eq. (7) states that the traction vector is normal to these
equi-potential surfaces.

An example of such a work function in two dimensions (i.e., d3¼ 0) is
[40]:

Uðd1; d2Þ ¼ W1 þW1 1 þ d1

d�1

� �
e
�d1

d�
1 q� 1ð Þ � qe

�
d2
2

ðd�
2
Þ2

 !
; ð8aÞ

where q¼W2=W1. W1 is the energy needed to separate a unit area of the
interface in pure tension (commonly referred to as the intrinsic work of
adhesion) and W2 is the energy needed to fail the interface in pure shear
and d�i ði ¼ 1; 2Þ are material parameters that represent characteristic
distances over which the cohesive tractions act. Contour plots of this
potential are shown in Fig. 6. Using Eq. (7), the traction vector is

T1 ¼ W1d1

ðd�1Þ
2
e
�d1

d�
1 1 � qð1 � e

�
d2
2

ðd�
2
Þ2Þ

 !
; ð8bÞ

T2 ¼ 2W2d2

ðd�2Þ
2

1 þ d1

d�1

� �
e
�d1

d�
1 e

�
d2
2

ðd�
2
Þ2 : ð8cÞ

The normalized tractions given by Eqs. (8b,c) are plotted in Fig. 7. A
one-dimensional work function /(d1) can be extended to the
three-dimensional case by defining U(d1, d2, d3)�/(de)where

de �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1 þ bðd2
2 þ d2

3Þ
q

and b> 0 is a material constant. (In this case
we assume isotropy in the interfacial plane, i.e., we do not distinguish
between directions ‘‘2’’ and ‘‘3’’.)

Since the failure of the interface is defined by its inability to support
traction, Eqs. (8b) and (8c) imply that the interface fails if any one of
the following conditions is satisfied:

i. d1 ! 1 ð9aÞ
ii. d1 ¼ 0 and d2j j ! 1: ð9bÞ
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FIGURE 6 Contours of potential normalized by W1 (W2¼W1, q¼ 1). Also
shown are vectors representing tractions.

FIGURE 7 (a) Normalized opening traction T1d
�
1=W1 versus normalized open-

ing displacement d1=d
�
1 when d2¼ 0; (b) Normalized sliding traction T2d

�
2=W2

versus normalized shear displacement. d2=d
�
2 when d1¼ 0.

16 C. Y. Hui et al.
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Note that, unless the interface is loaded in pure shear, failure in shear
must be accompanied by failure in tension.

Equations (8a–c) illustrate three features of some widely-used,
potential-based, cohesive models:

1. The traction vanishes as ~dd !~00 (Initial hardening, cohesive front
not defined),

2. Non-zero traction for all finite d � ~dd
			 			 (crack front not well-defined).

Note that the traction vanishes much faster than d�1as d!1,
3. The work to fail a unit area of the interface is always W1, inde-

pendent of the loading direction. The only exception is when the
interface is loaded in pure shear. In this case the work is W2. In
the following we examine each of these features in detail.

2.6. Hardening vs. Rigid Models

Cohesive zone models in which the traction vanishes smoothly as
~dd !~00 will be defined as hardening models. In hardening models,
cohesive zone fronts can not exist in any finite structures under load
(see definition of cohesive zone front earlier). In a finite element
model, hardening cohesive zone models can lead to softening of bulk
behavior [42,47]. Another interesting, but less well-known, result is
that material interpenetration will always occur if a hardening cohes-
ive zone model is used to study the growth of a preexisting crack
loaded in Mode I. A proof of this result can be found in [69]. To the best
of our knowledge, the size of this interpenetration zone at the crack tip
has not been studied. It should be noted that material interpen-
etration is penalized in Needleman’s model by the term
d1 expð�d1=d

�
1Þ in Eq. (5b). By making d�1 very small, very large normal

compressive traction results as d1 become negative.
Thus, a cohesive zone model with a hardening branch has the fol-

lowing features that need to be kept in mind:

1. material softening
2. material interpenetration.

Material softening can be an issue particularly when such cohesive
elements are distributed between elements throughout the mesh. If
the initial hardening branch is sufficiently stiff compared with neigh-
boring elements, material softening is less of an issue when cohesive
elements lie on a single plane. Also, an initial hardening branch is ben-
eficial for numerical implementation because cohesive elements open
and close automatically and smoothly as a simulation proceeds.
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By the same token, any compression borne by the cohesive interface
results in interpenetration of the adjoining elements, unless
additional contact constraints are applied between them.

Cohesive zone fronts are well-defined in ‘‘rigid’’ cohesive models
such as the classical Dugdale-Barenblatt (DB) model which was used
to model plane stress Mode I fracture of mild steel. This model can be
extended to include shear deformation. The potential associated with
the generalized Dugdale-Barenblatt (GDB) model is

U ¼ rod1 þ so d2j j þ so d3j j; ð10Þ

where ro, so are the critical cohesive stresses to open and slip the inter-
face, respectively. To prevent material interpenetration, the potential
function is defined in the half space d1> 0. According to Eqs. (6) and
(8), interface displacements can occur if

T1 ¼ ro d1 > 0; ð11aÞ
Ti ¼ �so di > 0ðþÞ; di < 0ð�Þ; i ¼ 2; 3: ð11bÞ

In analogy with classical plasticity, the planes T1¼ ro and Ti¼�so can
be viewed as a ‘‘yield’’ surface in traction space (T1, T2, T3). A traction
vector that is inside the yield surface cannot cause interfacial displace-
ment. Note that the origin ~dd ¼~00 is a point where the traction vector is
not uniquely defined. Also, the GDB model yield surface is not smooth;
it has corners at the vertices of the rectangle defined by the intersec-
tions of the lines in Eqs. (11a,b).

Specifically, a rigid cohesive model must formally satisfy the condition

lim
~dd!~00þ

~TT 6¼~00: ð12Þ

The notation ~dd ! 0þ implies that the limit is taken with d � ~dd
			 			 > 0.

Note that lim~dd!~00
~TT does not exist in the usual mathematical sense

since the traction vector is not a continuous function of the interface
displacement vector at zero. In this work, the existence of lim~dd!~00

~TT
means that the traction vector will approach a unique value given
any smooth path approaching the origin in displacement space with
d> 0, although each path will, in general, produce a different limit.
We further assume that this limit depends only on the tangent of the
path as it approaches d¼ 0; in other words, the limiting value of traction
is the same for all smooth curves entering d¼ 0with the same slope. The
resulting potential surface defined by this limiting process in stress
space is called a yield surface, in analogy with classical plasticity. For
a perfectly rigid cohesive zone model, the traction vector must lie inside
or on the yield surface. The interface displacement vector is identically

18 C. Y. Hui et al.
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zero for any traction vector inside the yield surface. Plastic flow is equiva-
lent to the motion of the interface. Equation (7) implies that interface
motion in a rigid cohesive zone model is possible if, and only if, the trac-
tion vector is normal to equi-potential surfaces in displacement space.

For example, suppose that the potential function is given by:

U ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1 þ bðd2
2 þ d2

3Þ
q

; b > 0; ð13Þ

where A and b are positive constants. For non-trivial displacement,
the traction is

~TT ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1 þ bðd2
2 þ d2

3Þ
q d1; bd2; bd3ð Þ: ð14Þ

This model is perfectly rigid since the limit of ~TT as ~dd !~00 is in general a
non-zero vector (see below). Furthermore, Eq. (14) implies that

A�2T2
1 þ A2b

� ��1ðT2
2 þ T2

3Þ ¼ 1: ð15Þ

Equation (15) implies that the yield surface is an ellipsoid of revolution
with semi-axis Aand A

ffiffiffi
b

p
. For the special case ofb¼ 1, the yield sur-

face is a sphere of radius A. A path in displacement space corresponds
to a path on the yield surface. For example, consider a straight line
path d2¼ad1, d3¼ bd1 in displacement space, where a, b are positive
numbers. The image of this path on the yield surface can be obtained
using Eq. (14). For this special case, the path in stress space collapses

to a single point on the yield surface, i.e., ~TT ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þbða2þb2Þ

p 1; ba; bbð Þ.
Thus, the interface continues to deform under this constant traction,
in analogy with a rigid plastic material.

In general, it is possible to construct rigid models in which the yield
surface evolves with interface motion. For example, consider

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1 þ bðd2
2 þ d2

3Þ
q

v d1; d2; d3ð Þ; ð16Þ

where v is a smooth function of its arguments. In particular, v(0, 0,
0)¼A> 0. For this case, the initial yield surface is still given by
Eq. (15), but subsequent yield surfaces are determined by the behavior
of v. As an example, consider

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1 þ bðd2
2 þ d2

3Þ
q

e�d1�ðd2
2þd2

3Þ: ð17Þ

Equation (17) implies that the yield surface shrinks with interfacial
motion. It can be verified easily that the traction decreases with the

Cohesive Zone Models and Fracture 19

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
9
:
1
7
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



size of the yield surface and that failure of the interface occurs when
the yield surface shrinks to the point ~dd ¼~00.

It is well known that the interface fracture toughness of bimaterial
systems is dependent on the applied phase angle, see for example
[70,71]. Potential functions that satisfy condition 3 [see paragraph
after Eq. (9b)] in general can not predict such dependence, unless
the material outside the cohesive zone undergoes inelastic deformatio-
n. In this case, the size of the plastic zone depends on both the cohesive
model and the plastic flow rule. As a result, the energy dissipated as
the crack advances depends on the loading direction, even though
the intrinsic work to separate the interface does not. This approach
has been pursued by Tvergaard and Hutchinson [36,37]. The relation-
ship between toughness, fracture strength, and the intrinsic work of
adhesion in [36] can actually be captured by a cohesive model which
represents the two-dimensional plastic flow in the crack tip region
by a set of one-dimensional inelastic springs [72]. However, there
are many physical systems where inelastic deformation is primarily
confined to a thin layer of material along interfaces, for example, fric-
tion sliding, shear deformation zone in polymers, and adhesive failure
of lap joints. Furthermore, there is no intrinsic reason which suggests
that the work to fail an interface must be independent of the loading
direction. For example, the experimental data of Yang et al. [52]
showed significant differences in Mode I and Mode II toughness.

It is not difficult to construct potentials with directional interfacial
fracture energies. For example, consider the potential

Uðd1; d2Þ ¼ WII tanh
a�dd2

1 þ �dd2
2

1 þ �dd2
1

 !
; ð18Þ

where a is defined by tan ha�WI=WII. Contour plots of the potential given
by Eq. (18) are shown in Fig. 8. In Eq. (18), the displacements are normal-
ized by some appropriate characteristic length d�, i.e., �ddi ¼ di=d

�. Note

Uðd1 ¼ 0; d2 ! 1Þ ¼ WII ð19aÞ
WI � Uðd1 ! 1; d2 ¼ 0Þ ¼ ðtanh aÞWII ¼ WI ð19bÞ

For proportional loading in displacement space, i.e., if d1!1 and
d2!1 along the lined1=d2¼ b, then

Uðd1 ! 1; d2 ! 1Þ ¼ WII tanh
ab2 þ 1

b2

� �
: ð20Þ

20 C. Y. Hui et al.
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The tractions are:

T1 ¼ WII

2�dd1 a� �dd2
2

� �
d�ð1 þ �dd2

1Þ
2

sech2 a�dd2
1 þ �dd2

2

1 þ �dd2
1

 !
; ð21aÞ

T2 ¼ WII
2�dd2

d�ð1 þ �dd2
1Þ

sech2 a�dd2
1 þ �dd2

2

1 þ �dd2
1

 !
: ð21bÞ

Equations (21a,b) imply that if d1!1 and d2!1 along the line d1=
d2¼ b, the magnitude of the traction vanishes like j~TTj � 1=d; where

d �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1 þ d2
2

q
. In general, the work to fail a unit area of the interface

depends on the rate for which d1!1 and d2!1. For example, if
d1 ¼ bd2

2 and d2!1, then

Uðd1 ! 1; d2 ! 1Þ ¼ WI: ð22Þ

We now show that the traction associated with potentials which
allow directional fracture energies must decay like d�1 asd!1. To
demonstrate this result, we employ a polar description of the work

function, i.e., U¼U(d, h), where d �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1 þ d2
2

q
and h� tan�1(d2=d1).

FIGURE 8 Contours of normalized potential (U=WII) as a function of normal-
ized opening displacement �dd1 and sliding displacements �dd2.
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In polar coordinates, the tractions are

Td ¼ @U=@d; Th ¼
1

d
@U
@h

: ð23Þ

(Td, Th) is related to (T1, T2) by usual vector transformation:

Td ¼ T1 cos hþ T2 sin h; Th ¼ �T1 sin hþ T2 cos hð Þ: ð24Þ

The displacement (dd, dh) is related to (d1, d2) by a similar expression.
The requirement that the fracture toughness depends on the loading
direction implies that U(d!1, h)!G(h). Therefore, a necessary con-
dition for the work function to have different interfacial energies for
different loading directions is dG=dh 6¼ 0. If this is the case, then
Eq. (23) implies that Th must vary as d�1 as d!1. Another way to
understand this result is to note that the work done by the traction
from ~dda to ~ddb is

Uab ¼
Z ~dda

~dda

ðTRddR þ ThddhÞ: ð25Þ

Let ~dda and ~ddb lie on a very large circle with radiusd. Since G(h) is a
non-constant function, Uab cannot be zero. Since ~dda and ~ddb lie on a cir-
cular path, ddR¼ 0 and ddh¼ ddh. This implies that Uab ¼ d

R hb
ha

Thdh.
Thus, for bounded non-zero values of Uab, Th/ 1=d as d!1. Also,
the first equation in Eq. (23) implies that Td must decay faster than
1=d as d!1. This result, together with Eq. (24), shows that T1, T2

vanishes as 1=d as d!1.
Why don’t we use this type of potential? The problem is that poten-

tials with directional dependent interface energies always violate
steady state crack growth under small scale yielding (SSY) conditions.
To see this, consider a semi-infinite plane strain crack lying along the
negative real axis. The material is assumed to be homogeneous, iso-
tropic, and linearly elastic with Young’s modulus E. The SSY bound-
ary condition is

rijðr ! 1; hÞ ¼ KIffiffiffiffiffiffiffiffi
2pr

p f IijðhÞ þ
KIIffiffiffiffiffiffiffiffi
2pr

p f IIij ðhÞ; ð26Þ

where (r, h) is a polar coordinate system at the crack tip. f IijðhÞ and
f IIij ðhÞ are universal dimensionless functions describing the angular
variation of the stresses. To satisfy SSY, the stresses due to the
cohesive zone must be small compared to the applied field (26) as

22 C. Y. Hui et al.
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r!1. SSY and steady state crack growth implies that interfacial dis-
placement in the far field must be given by

d1 / KI

ffiffiffiffiffiffiffi
�x

p
=E and d2 / KII

ffiffiffiffiffiffiffi
�x

p
=E as x ! �1: ð27Þ

On the other hand, our previous analysis shows that Th is proportional

to 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1 þ d2
2

q
as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1 þ d2
2

q
! 1. According to Eq. (27), Th must vary as

1=
ffiffiffiffiffiffiffi
�x

p
as x!�1. This would mean that the normal cohesive traction

is of the same order of magnitude as the applied stresses at infinity—a
contradiction to the assumption of SSY.

Thus, potentials defined in the half space d1> 0 with direction-
dependent interfacial energies are inconsistent with SSY. This is a
very undesirable feature given the fundamental importance of the sep-
aration of length scales represented by SSY in fracture. To develop
cohesive zone models capable of predicting mixed mode failure in elas-
tic materials, at least two other choices are possible. The first is to sup-
plement the work function approach with the concept of failure surface
in displacement space, as discussed below. The basic idea of this
approach is similar to a model developed earlier by Yang and Thouless
[73]. The second choice is to consider non-potential constitutive
models.

3. ANISOTROPIC FAILURE SURFACE

To motivate the concept of an anisotropic failure surface, consider
the classical one-dimensional DB model where the cohesive
traction is the gradient of the potential U¼ rod1. Note that the
potential is unbounded as d1 !1. The cohesive traction, ro, is
independent of the opening displacement and hence does not van-
ish as d1!1. Failure of the interface is defined by imposing the
additional condition d1 ¼ dc, where dc is the critical crack opening
displacement.

This idea can be readily extended to the multi-axial loading case by
defining the work to fail an interface by

Z ~ddc

0

~TT � d~dd; ð28aÞ

where ~ddc is a vector which lies on a closed surface, @X, in the displace-
ment space (d1, d2, d3). This surface is defined as the failure surface
and it is assumed to be closed and bounded. In addition, the origin
~dd ¼~00 is assumed to lie in its interior X. The traction, ~TT, is still given
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by the gradient of a work function, but the domain of the work function
is now restricted to X. Since the work function is defined in an open
set, the work function has no meaning once the material has failed.
In other words, points on the failure surface cannot be reached by
loading paths which lie on or outside the failure surface. Once the
failure surface is reached, the traction on the interface is set to
zero, i.e.,

~TT ¼~00; ~dd 2 @X ð28bÞ

As an example, consider the special case of a two-dimensional prob-
lem where d3¼ 0 and the failure surface is defined by the ellipse

d2
1c þ c2d2

2c ¼ d2
c ; ð29Þ

where d1c and d2c are the opening and slip displacements at the tip of a
pre-existing crack, 0< c< 1, and dc is a material constant. Let us
assume the potential is given by Eq. (8a). For simplicity, we set
d�1 ¼ d�2 ¼ dc in Eq. (8a). In addition, we consider W�W1 and q> 1 as
parameters. The domain of the work function

Uðd1; d2Þ ¼ W þW 1 þ d1

dc

� �
e�d1=dc q� 1ð Þ � qe�d2

2
=d2

c

� �
ð30Þ

is the interior of the ellipse Eq. (29). By definition, the work, WI to
fail a unit area of the interface in the opening mode is computed using
Eqs. (29) and (30), i.e.,

WI ¼ Uðd1 ¼ d1c ¼ dc; d2 ¼ 0Þ ¼ W 1 � 2e�1
� �

: ð31aÞ

Similarly, failure in pure sliding mode occurs when d1¼ 0;
d2¼ d2c¼ dc=c. Equations (29) and (30) imply that

WII ¼ qð1 � e�1=c2ÞW: ð31bÞ

For sufficiently large q and small c, the ratio WII = WI can be arbi-
trarily large.

Let us use this model to study the fracture of a pre-existing plane
strain crack in a linear isotropic elastic material with Young’s
modulus, E, and Poisson’s ratio, n, under SSY conditions. The crack
tip is located at the origin with the crack occupying the negative real
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axis. The maximum opening and sliding displacements in the cohesive
zone occur at the crack tip and are completely determined by the
applied stress intensity factors, KI and KII. Dimensional analysis
implies that these displacements have the following form:

d1c ¼
K2

I

E�ro
f1ðKII=KIÞ; ð32aÞ

d2c ¼
K2

I

E�ro
f2ðKII=KIÞ; ð32bÞ

where E� ¼ E=ð1 � n2Þ, ro�W=dc, and fi are unknown dimensionless
functions. These dimensionless functions can be determined using
numerical methods. Since fracture occurs when Eq. (29) is satisfied,
Eqs. (32a,b) imply that

K2
I

E�rc

� �2

½f1ðKII=KIÞ	2 þ c2 K2
II

E�rc

� �2

½f2ðKII=KIÞ	2 ¼ d2
c : ð33Þ

Once the fi’s are determined, Eq. (33) completely specifies the fail-
ure locus in (KI, KII) or K space. Thus, there is a one-to-one corre-
spondence between the failure surface in the displacement space
and the failure surface in K space. Clearly, the failure surface
described by Eq. (33) is anisotropic. It is interesting to note that
an equivalent form of Eq. (33) can be obtained using the energy bal-
ance. Indeed, at the onset of fracture, the energy release rate must
equal to the work of adhesion, i.e.,

ðK2
I þK2

IIÞ
E� ¼ W þW 1 þ d1c

dc

� �
e�d1c=dc q� 1ð Þ � qe

�
ðd2
c�d2

1c
Þ

c2d2
c

 !
; ð34Þ

where d1c is given by Eq. (32a). Equations (33) and (34) are equiva-
lent and they predict the same failure locus in K space.

In general, the failure locus in displacement space is a curve
described by

Fðd1c; d2cÞ ¼ 0: ð35Þ

This curve intersects the positive d1 axis at dcod, the displacement
for the interface to fail in the opening mode. For an isotropic inter-
face, this curve also intersects the d2 axis at �dcsd, the critical shear
displacements under pure sliding. The work to fail the interface
in pure opening mode and sliding mode is given by U(dcod, 0)¼WI
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and U(0, �dcsd)¼WII, respectively. Once the potential and the
failure surface are specified, the failure surface in K space is
determined by solving a mechanics problem. In general, the failure
surface in K space is anisotropic so that this theory is capable of
predicting mixed mode fracture in elastic materials. In this
approach, cohesive tractions will generally jump abruptly to zero
as one traverses the crack front, as is the case in the Dugdale
model. An example of this approach can be found in the recent
work of Park et al. [74].

3.1. Multiple Cohesive Zone Fronts

Rigid cohesive zone models can have multiple cohesive zone tips, as
illustrated by the following example. Consider the generalized DB
cohesive zone model described by Eqs. (10) or (11a,b). Let us consider
a pre-existing plane strain crack lying along a bimaterial interface
which coincides with the x-axis. The region of slip and opening along
the interface is assumed to be small compared with the crack length
so that the crack can be considered to be semi-infinite. The crack lies
along the negative x axis and with its tip at x¼�a, a> 0. SSY implies
that the far field interface traction is given by

lim
x!1;y¼0

T1 þ iT2 ¼ K1 þ iK2ffiffiffiffiffiffiffiffi
2px

p e�ie; ð36Þ

where K1þ iK2 is the complex stress intensity factor and e is the oscil-
lation index of the bi-material elastic system [75]. For simplicity, we
consider the special case of e¼ 0 which corresponds to the case of a
homogeneous material or an incompressible linear elastic solid bonded
to a rigid substrate. Let the tip of the shear cohesive zone be located at
the origin x¼ 0. Without loss in generality, assume the opening zone is
shorter than the sliding zone so that the opening zone tip is at x¼�b,
a> b> 0. The length of the opening zone is Lo¼a� b and the length of
the slip zone, Ls, is a. It can be shown that [76]

Ls ¼ a ¼ p
8

KII

so

� �2

; ð37Þ

Lo ¼ a� b ¼ p
8

KI

ro

� �2

: ð38Þ
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The cohesive zone tips coincide if, and only if, Lo¼Ls or

KII

so

� �2

¼ KI

ro

� �2

: ð39Þ

This result shows that multiple cohesive zone tips will occur unless the
applied mode mixity is jso=roj. Note that Eq. (39) is valid even if ro is a
function of so. The maximum crack opening and sliding displacements
at x¼�a are

d1c ¼
K2

I

E�ro
; d2c ¼

K2
II

E�so
; ð40Þ

respectively.
The failure locus in K space is obtained by specifying an anisotropic

failure curve in displacement space. For example, suppose the failure
curve is given by Eq. (29), then the failure locus in K space is obtained
by substituting Eq. (40) in Eq. (29), resulting in

K2
I

E�ro

� �2

þc2 K2
II

E�so

� �2

¼ d2
c : ð41Þ

The fracture energy to fail a unit area of the interface, W, depends on
the loading direction. W is related to the cohesive parameters and the
crack opening displacement via the work function defined by Eq. (10),
i.e.,

W ¼ rod1c þ so d2cj j ¼ rod1c þ so

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
c � d2

1c

q
=c: ð42Þ

For example, the work to fail a pure Mode II crack is, according to
Eq. (42):

WII ¼ sodc=c ¼ sorodc=ðrocÞ ¼ c�1ðso=roÞWI: ð43Þ

Note that WII>WI if so=ro> c.

3.2. Condition for Multiple Cohesive Zone Fronts

Since cohesive zone fronts are defined only for rigid cohesive models,
multiple fronts can only exist for these models. First, consider smooth
potential functions, U. Assuming an isotropic interface, symmetry con-
siderations imply that there can be no shear traction in pure opening
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mode3, i.e.,

@U=@d2jd2¼0;d1!0þ¼ T2ðd2 ¼ 0; d1 ! 0þÞ ¼ 0: ð44aÞ

We further make the reasonable assumption that there can be no nor-
mal traction in pure slip mode, that is,

@U=@d1jd1¼0;d2!0þ¼ T1ðd1 ¼ 0; d2 ! 0þÞ ¼ 0: ð44bÞ

Based on these assumptions, we establish a condition for the exist-
ence of multiple fronts. Consider the following two-dimensional prob-
lem where a pre-existing semi-infinite crack lies on the x-axis. Assume
a far field loading given by Eq. (36); thus, both shear and normal stres-
ses are non-zero directly ahead of the crack tip. Consider first the case
where a multiple cohesive tip exists in which d1¼ d2¼ 0 for x> 0 and
d2¼ 0 d1> 0 in (� s, 0) for some s> 0. Let T1 and T2 denote the shear
and normal interface stress ahead of the cohesive tip, i.e., x� 0,
y¼ 0. These stresses are non-zero and continuous everywhere on the
x axis, in particular, T2 6¼ 0 at x¼ 0. However, since T2 6¼ 0, continuity
implies that @U=@d2jd2¼0;d1!0þ 6¼ 0; this contradicts Eq. (44a), so mul-
tiple tips where opening occurs before slip (tip of slip zone behind
opening zone tip) cannot exist. To satisfy T2(x¼ 0) 6¼ 0 and
T1(x¼ 0) 6¼ 0, the displacement d1, d2 must approach zero at an angle
with absolute value greater than 0 and less than 90 degrees [i.e.,
d2! 0þ, d1! 0þ, jd2j=d1> 0, see discussion after Eq. (12)], that is, both
open and slip displacement must occur together at x¼ 0. In particular,

T2ðx ¼ 0Þ ¼ @U=@d2jd2!0þ;d1!0þ; d2j j=d1>0: ð45aÞ

An example of Eq. (45a) is the potential function specified by Eq. (13).
For this case, Eq. (14) implies that

@U=@d2jd2¼0;d1!0þ¼ 0; ð45bÞ

but @U=@d2jd2!0;d1!0þ 6¼ 0; its value depends on how d1 and d2 approach
zero.

Similarly, consider the other situation where slip occurs before
opening. This corresponds to d1¼ d2¼ 0 for x> 0 and d1¼ 0, d2> 0 in
(�s, 0) for some s> 0. As one approaches x¼ 0 from x> 0, the traction
vector enters the initial yield surface. However, since T1 6¼ 0,

3For small d2, the shear traction is an odd function of d2. Anisotropy can develop for
larger values of d2.
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continuity implies that @U=@d1jd1¼0;d2!0þ 6¼ 0; this contradicts Eq. (44b),
so multiple front of the above form also cannot exist.

On the other hand, potential functions such as the generalized
Dugdale-Barenblatt model have corners on the d1�, d2� and d3-axis.
Figure 9a shows the equi-potential line U¼a> 0 for the generalized
Dugdale-Barenblatt model in the (d1, d2) plane. Note that since we
are interested in the behavior near the cohesive zone tip, a<< 1.
The gradient of the potential function, U, is not defined at the corner
on the d1-axis and the two corners on the d2-axis. The resulting trac-
tion at this point, which corresponds to a pure opening mode, can be
any vector with T1¼ ro and T22 (� s0, s0), i.e., in between the two
dashed arrows ond1-axis in Fig. 9a. In other words, any traction vector
with T1¼ ro that lies inside this wedge of internal angle 2 tan�1(ro=so)
can cause the interface to open with zero slip. Likewise, notice that the
slope of the equi-potential line at (d1¼ 0, d2¼a=s0) is �r0=s0 6¼ 0. This
feature implies that in a pure shear mode, the traction can be any
vector with T2¼ s0 and T12 (0, r0). Therefore, the generalized
Dugdale-Barenblatt model violates Eqs. (44a,b) and can admit mul-
tiple cohesive fronts. In contrast, the equi-potential curve U¼a> 0
of the work function given in Eq. (13) is shown in Fig. 9b. Note that
this curve has no corners and satisfies Eqs. (44a,b). Finally, our analy-
sis shows that multiple cohesive zone fronts can exist for smooth

FIGURE 9 (a) An equi-potential surface of the generalized Dugdale-
Barenblatt model formed by the lines d1¼ 0, rod1�sod1¼a. (b) An equi-
potential surface of the work function given in Eq. (13) in the (d1, d2) plane.
Note: Since we are interested in the behavior near the tip, a! 0.
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cohesive zone models that violate Eqs. (44a,b), i.e., interfaces that are
anisotropic even in their virgin states.

4. HISTORY DEPENDENT INTERFACE

A general approach to describe constitutive behavior of interfaces is to
consider rate-dependent state-variable models. A general form of this
model is

Ti ¼ fið _dd1; _dd2; _dd3;/1;/2:::::/mÞ; i ¼ 1; 2; 3; ð46aÞ
_//j ¼ hjð _dd1; _dd2; _dd3;/1;/2:::::/mÞ: ð46bÞ

A state is a point in the state space, consisting of tuples of the
form(d1, d2, d3, /1, /2 ...../m), where d1, d2, d3, /1, /2 ...../m are state
variables. If the history of d1, d2, d3 is given, then the evolution of
the interface traction (T1, T2, T3) and the state variables /j can be com-
puted by solving Eqs. (46a,b) with initial data. In this case the trac-
tions are not necessarily derived from a potential.

For concreteness, we restrict our attention to a one-state variable
theory. Without loss of generality, we consider the two-dimensional
problem where d3¼ 0. There is no theoretical difficulty extending the
following derivation to include multi-state variables and the out-of-
plane displacement.

We demonstrate that state variable equations of the form Eqs.
(46a,b) can be reduced to rate-independent interface models capable
of predicting mixed mode fracture. In the rate-independent limit, the
interface tractions are independent of the magnitude of the displace-
ment rates. In other words, the functions fi must be invariant to the
transformation _ddi ! a _ddi, wherea> 0. Furthermore, _// ! a _// upon such
a transformation. Mathematically, we must have

fið/; _dd1; _dd2Þ ¼ fið/;a _dd1;a _dd2Þ 8a > 0 ð47aÞ
and

hð/;a _dd1;a _dd2Þ ¼ ahð/; _dd1; _dd2Þ 8a > 0: ð47bÞ

Equation (47a) shows that, if _dd1; _dd2 are changed to

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_dd2
1 þ _dd2

2

q
; h ¼ tan�1ð _dd2= _dd1Þ, then in the rate-independent limit,

the functions fi must be independent of R. Therefore, in this limit, the
traction is related to the state variable and the displacement rates by

Ti ¼ fið/; tan�1ð _dd2= _dd1ÞÞ: ð48Þ
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Equation (47b) implies that

ahð/;R; hÞ ¼ hð/;aR; hÞ , hð/;R; hÞ ¼ RHð/; hÞ: ð49Þ

Equations (46b) and (49) imply that, in the rate independent limit, the
rate of change of the state variable must have the form

_// ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_dd2
1 þ _dd2

2

q
Hð/; tan�1ð _dd2= _dd1ÞÞ: ð50Þ

For the rest of this paper, we will focus on rate-independent plasticity-
like interface models. These models address the fact that most interfacial
processes are irreversible; as a result, the unloading behavior of
such interfaces cannot be captured by potential-based models. The
rate-independent models proposed below are expected to be applicable
to materials where the bulk response is represented well by rate-
independent plasticity models. It can potentially be applied to study pro-
blems such as fatigue crack growth in metals and polymeric materials.

4.1. Damage-Based Interface Models

The rate-independent formulation above is quite general. In this sec-
tion we give examples of models which obey Eqs. (48) and (50).

Ortiz and Suresh [49] and Camacho and Ortiz [44] introduced
rate-independent, damaging and irreversible, cohesive zone models.
Ortiz and Suresh [49] employed a linear cohesive model that fails at a
critical value of opening traction, thus rendering their work of fracture
strongly dependent on mode mixity, diverging to infinity at phase angle
of p=2. Camacho and Ortiz [44] added cohesive elements adaptively as
the crack propagated. They used a mixed-mode, traction-based criterion
for introduction of a cohesive element, e.g., under tension,

reff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ b s2

p
> rfr r > 0ð Þ ð51aÞ

Note that Eq. (51a) is in the form of Eq. (15) and so the corresponding
potential in our notation can be obtained by using Eqs. (13) and (14).
Cohesive tractions were assumed to weaken irreversibly with increas-
ing opening. Under tension, for example, the critical tensile traction is
reduced as

rfr ¼ ro 1 � d
dcr

� �
; ð51bÞ

where d is the maximum opening experienced and dcr is the value of
the state variable at which the interface loses its ability to support
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tractions. If tractions on the interface are reduced below the current
value of rfr at any time prior to complete separation, unloading is
assumed to be linear, reversible, and through the origin. In our
notation, this can be written as

_// ¼ _rrfr ¼ �ro
_dd1

dcr
¼ � ro

dcr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_dd2
1 þ _dd2

2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ _dd2

2=
_dd2
1

q HS _dd1

� �
HS /ð Þ; / 0ð Þ ¼ ro; ð51cÞ

and HS(x) is the step function.
By combining the cohesive elements with a sophisticated finite

element scheme for solving coupled, multi-body mechanics and dynam-
ics, Camacho and Ortiz [44] show dramatic capability of cohesive zone
models when interspersed between all elements, to produce multiple
cracks, crack branching, fragmentation, etc. Finite elements that incor-
porate cohesive zone models are now available in commercial finite
element codes [77]. The cohesive zone can be modeled either as a con-
tinuum (finite-thickness and continuum material properties), or using
a traction-separation law (infinitesimal-thickness). In the former case,
the model is only slightly different from a conventional finite element
simulation with some regions of thin adhesive. In the latter case, the
current implementation in ABAQUS1 [77], based on [78,79], assumes
progressive damage and cannot be used for crack-healing, for example.

4.2. Rate Independent Plastic Interface Model: No Initial
Hardening

We first consider interface models that have no hardening behavior.
We introduce the concept of an initial yield surface. As in classical
plasticity, all admissible interface traction (T1, T2) must lie inside or
on an initial yield surface in traction space. We denote this surface by

FðT1;T2Þ ¼ C: ð52aÞ
An example of an initial yield surface is:

FðT1;T2Þ ¼ ðT1=rcÞ2 þ ðT2=scÞ2 ¼ 1; ð52bÞ

where rc, sc are the interfacial tensile and shear strength, respectively.
The existence of an initial yield surface corresponds to the require-
ment that finite tractions are needed to displace the interface. Thus,
when this model is applied to study fracture, the cohesive zone tips
are well defined. If (T1, T2) lies inside the initial yield surface, then
interface displacement cannot occur and _ddi ¼ 0. If (T1, T2) lies on the
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initial yield surface F(T1, T2)¼C, and if

� _TTi@F=@Ti > 0; ð53aÞ

then unloading is said to occur. For example, for initial yield surface of
the form given by Eq. (52b), unloading occurs if

_TTi@F=@Ti ¼ 2 _TT1T1=r
2
c þ 2 _TT2T2=s

2
c < 0: ð53bÞ

The case of _TTi@F=@Ti ¼ 0 corresponds to continued motion of the inter-
face without unloading, i.e., the traction remains on the initial yield
surface.

Since the interface can only soften as unloading occurs, subsequent
unloading surfaces must have the form:

FðT1;T2;/Þ ¼ 0: ð54aÞ

For example, if F is given by Eq. (52b), then

FðT1;T2;/Þ ¼ ðT1=rcÞ2 þ ðT2=scÞ2 ¼ /�1; ð54bÞ

where / in Eq. (54b) is a state variable. Since /¼ 1 for the initial yield
surface, and softening requires that subsequent yield surfaces shrink
as interface deformation occurs, /� 1. The state variable / can be
interpreted as a damage parameter which causes softening of the
interface.

As in plasticity, we propose the normality rule

_ddi ¼ _kk@F=@Ti; ð55aÞ

where _kk is a rate factor. This condition states that the incremental
interfacial displacement is normal to the current yield surface. It is
possible to derive Eq. (48) based on the normality rule, that is,
rate-independent cohesive zone models can be generated based on
the normality rule. The derivation is given in the Appendix.

For yield surfaces of the form given by Eq. (54b), the displacement
rates using the normality condition Eq. (55a) are found to be:

_dd1 ¼ 2 _kkT1=r
2
c ;

_dd2 ¼ 2 _kkT2=s
2
c : ð55bÞ

Combining Eq. (55b) and the yield condition Eq. (54b), we have

r2
c
_dd2
1 þ s2

c
_dd2
2 ¼ 4 _kk2/�1: ð56aÞ
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Equation (56a) can be rewritten as

_kk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
c
_dd2
1 þ s2

c
_dd2
2

q
2

ffiffiffiffi
/

p
¼ /

2
ðT1

_dd1 þ T2
_dd2Þ: ð56bÞ

Thus, the rate factor is proportional to the power of interface dissi-
pation. Combining Eqs. (55b) and (56b), the traction is

T2 ¼ s2
c
_dd2

2 _kk
¼ s2

c
_dd2ffiffiffiffi

/
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
c
_dd2
1 þ s2

c
_dd2
2

q ¼ �scffiffiffiffi
/

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2

c
_dd2
1=s

2
c
_dd2
2Þ þ 1

q ; ð57aÞ

T1 ¼ r2
c
_dd1

2 _kk
¼ r2

c
_dd1ffiffiffiffi

/
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
c
_dd2
1 þ s2

c
_dd2
2

q ¼ �rcffiffiffiffi
/

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ðs2

c
_dd2
2=r

2
c
_dd2
1Þ

q ; ð57bÞ

which are special forms of Eq. (48). The shrinkage of the yield surface
is measured by /�1. Because the interface softens as it unloads, we
choose H to be a positive function so that / is monotonically increas-
ing. In a one-state variable model, the interface fails when the traction
goes to zero, i.e., when /!1. Equations (50) and (57a,b) allow us to
compute the traction history if the displacement history is given. We
illustrate this by considering some special loading histories.

Pure Opening Mode
The simplest loading history is a purely opening mode where _dd2 ¼ 0

and d1¼D(t), where D(t) is a known function of t satisfying the con-
ditionD(t¼ 0)¼ 0. Here t denotes some monotonically increasing load-
ing parameter. Since _dd2 ¼ 0, T2¼ 0 by Eq. (57a). Equation (50) becomes

_// ¼ _dd1

		 		H /; 0ð Þ � _dd1HIð/Þ; ð58Þ

where we have assumed _dd1 > 0. Assuming that the initial state is on the
initial yield surface, i.e., /¼ 1 and d1¼ 0, the solution of Eq. (58) isZ /

1

dx
HIðxÞ

¼
Z t

0

_dd1ðsÞds � DðtÞ: ð59Þ

As an example, we choose

HIðxÞ ¼ x=dcod; ð60Þ

where dcod is a material constant. Substituting Eq. (60) into Eq. (59),
we found

/ ¼ eDðtÞ=dcod : ð61Þ

34 C. Y. Hui et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
9
:
1
7
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



According to Eqs. (57b) and (61), T1 is

T1 ¼ r2
c
_dd1

2 _kk
¼ rc=

ffiffiffiffi
/

p
¼ rce

�DðtÞ=2dcod : ð62Þ

For this particular loading history, the work to fail a unit area of the
interface is

WI ¼
Z 1

0

r1dDðtÞ ¼ rc

Z 1

0

e�DðtÞ=2dcoddD ¼ 2rcdcod: ð63Þ

Proportional Loading
Consider the special case of proportional loading in displacement

space, that is, consider loading histories of the form

_dd2

_dd1

¼ b; ð64Þ

where b is a constant. As an example, consider a yield surface given by
Eq. (56a). According to Eqs. (57a,b), proportional loading in the dis-
placement space implies proportional loading in stress space, except
that the proportional constant is different. Specifically,

_dd2

_dd1

¼ b , T2

T1
¼ b

sc
rc

� �2

: ð65Þ

To simplify the mathematics, we assume H /; tan�1ð _dd2
_dd1
Þ

� �
is separable,

that is,

H /; hð Þ ¼ gðhÞ/
dcod

; h ¼ tan�1ð _dd2= _dd1Þ ¼ tan�1 b
		 		 � p=2: ð66Þ

Furthermore, we assume g is an even function. Note Eq. (66a) is
consistent with Eq. (60) as long as

gðh ¼ 0Þ ¼ 1: ð67Þ

For proportional loading, Eq. (50) becomes

_// ¼ _dd1

		 		 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ b2

q
gðhÞ/=dcod; ð68Þ

where h¼ tan�1b. The solution of Eq. (68) is:

/ ¼ e
ffiffiffiffiffiffiffiffi
1þb2

p
gðhÞDðtÞ=dcod ; ð69Þ
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where DðtÞ ¼
R t

0
_dd1ðsÞds. The tractions can be computed using Eqs.

(57a,b); they are:

T2 ¼ scffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2

c=s
2
cb

2Þ þ 1
q e�

ffiffiffiffiffiffiffiffi
1þb2

p
gðhÞDðtÞ=2dcod ; ð70aÞ

T1 ¼ �rcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ðs2

cb
2=r2

c Þ
q e�

ffiffiffiffiffiffiffiffi
1þb2

p
gðhÞDðtÞ=2dcod : ð70bÞ

Under proportional loading, the work to fail a unit area of the interface
is

W ¼
Z 1

o

T1dd1 þ T2dd2 ¼
Z 1

o

T1dDþ T2 bj jdD

¼
Z 1

0

rcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ðs2

cb
2=r2

c Þ
q þ bj jscffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2
c=s

2
cb

2Þ þ 1
q

2
64

3
75e� ffiffiffiffiffiffiffiffi

1þb2
p

gðhÞDðtÞ=2dcoddD:

ð71aÞ

Evaluating the integral in Eq. (71a), we found

W ¼ 2rcdcodffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ b2

q
gðhÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ðs2

cb
2=r2

c Þ
q þ bj jsc=rcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2
c=s

2
cb

2Þ þ 1
q

2
64

3
75: ð71bÞ

By definition, b!�1 corresponds to pure Mode II deformation

where d1¼ 0 and d2�K(t). In this limit,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ b2

q
D ! K, and Eq. (71b)

reduces to

W ! WII ¼
2scdcod
gðp=2Þ : ð72aÞ

According to Eqs. (63) and (72a), the condition for WII>WI is

gðp=2Þ < sc=rc: ð72bÞ

Clearly, there are infinitely many even functions, g, that satisfy Eqs.
(67) and (72b). A reasonable choice is to choose g with the following
properties: g achieves its absolute maximum at h¼ 0, monotonically
increasing for h< 0 and monotonically decreasing for h> 0 (e.g.,
gðhÞ ¼ 1 � 4ð1�xÞ

p2 h2, 0<x< sc=rc). It is interesting to note that a poten-
tial function U does not exist (i.e., Ti¼ @U=@di) even if the loading his-
tory is confined to proportional loading. Indeed, it is easy to verify that
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[using Eqs. (70a,b)]:

@T1

@d2
¼ @T1

b@D
6¼ @T2

@d1
¼ @T2

@D
: ð73Þ

Using Eq. (72a), Eq. (71) can be rewritten as

W ¼ WIffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ b2

q
gðhÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ½bgðp=2Þ	2 WII

WI

� �2
s

: ð74Þ

It is easy to see that WI�W�WII.

Loading in Mode I and followed by Mode II
Consider the evolution of the interface traction when a pure open-

ing displacement D(t) is applied during 0< t< to, followed by the appli-
cation of a sliding displacement. Specifically, we impose the following
displacement history:

_dd1 > 0 ) d1 ¼
Z t

o

_dd1ðsÞds �DðtÞ; _dd2 ¼ 0 0 < t < to; ð75aÞ

_dd1 ¼ 0; _dd2 > 0;KðtÞ �
Z t

to

_dd2ðsÞds t > to; ð75bÞ

where D, K are monotonic increasing functions of t that satisfy the con-
ditions

Dð0Þ ¼ KðtoÞ ¼ 0: ð76Þ

The interface traction for 0< t< to is given by Eq. (63), i.e.,

T1 ¼ rce
�DðtÞ=2dcod ; T2 ¼ 0: 0 < t < to: ð77Þ

For t> to, T1¼ 0 by Eq. (57b) and T2 ¼ sc=
ffiffiffiffi
/

p
by Eq. (57a). The

damage, /, is determined by solving Eq. (50) with H given by Eq.
(66) and the initial condition /ðtoÞ ¼ eDðtoÞ=dcod , as required by Eq.
(61). The solution is

/ ¼ eDðtoÞ=dcodegðp=2ÞKðtÞ=dcod : ð78aÞ

Using Eqs. (57a,b), the traction is

T2 ¼ sce
�DðtoÞ=2dcode�gðp=2ÞKðtÞ=2dcod ; T1 ¼ 0; t > to: ð78bÞ

The work to fail a unit area of the interface or adhesion energy is
found to be
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2rcdcodð1 � e�DðtoÞ=2dcodÞ þ 2scdcod
gðp=2Þ e

�DðtoÞ=2dcod ¼ WI þ ðWII �WIÞe�DðtoÞ=2dcod ;

ð79Þ

where WII ¼ 2scdcod
gðp=2Þ. It is interesting to compare this adhesion energy

with the adhesion energy if the interface were to fail by proportional
loading, which is given by Eq. (74). Note that the traction is discon-
tinuous at t¼ to.

Loading and Unloading in Mode II
Consider the following loading history where d1¼ 0 for all times.

The normality rule states that T1¼ 0. The stress state initially is on
the yield surface given by Eq. (56a), i.e., T1¼ 0, T2¼ sc. The evolution
of state is governed by Eq. (50) with H by Eq. (66). The traction is

T1 ¼ 0; T2 ¼ �scffiffiffiffi
/

p : ð80Þ

As before, we assume that g is an even function of h. Let d2(t)¼K(t) for
t1> t� 0, where K(t)is a positive continuous function for t> 0. In
addition, K(t¼ 0)¼ 0. Equation (50) implies that

_// ¼ _dd2

		 		H /; hð Þ ¼ _dd2

		 		 gðp=2Þ/
dcod

: ð81aÞ

The argument of g is p=2 since g is even. Integrating Eq. (81), for
t1> t� 0,

/ ¼ e
KðtÞgðp=2Þ

dcod : ð81bÞ

The shear traction is

T2 ¼ sce
�gðp=2ÞKðtÞ=2dcod : ð82Þ

Suppose at t¼ t1, the loading rate is suddenly reversed to _dd2 ¼ � _KKðt1Þ.
According to Eq. (50), this sudden reversal does not change the state
variable. However, Eq. (57b) implies that the traction is discontinuous
at t¼ t1. Specifically, the traction reverses sign, i.e.,
T2ðtþ1 Þ ¼

�scffiffiffiffiffiffiffiffi
/ðt1Þ

p ¼ �T2ðt�1 Þ. For t> t1, the traction is given by

T2 ¼ �sce
�KðtÞgðp=2Þ=2dcod t > t1: ð83Þ

It is clear that this process of displacement rate reversal can be carried
out indefinitely. The traction reverses sign each time the displacement
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rate is reversed. However, the work needed to fail a unit area of the inter-
face is still WII, irrespective of the number of loading rate reversals.

4.3. Interface Model with Initial Hardening

The above theory can also be used to describe interfaces that exhibit
initial hardening. For example, consider yield functions of the form:

FðT1;T2;/Þ ¼ ðT1=rcÞ2 þ ðT2=scÞ2 ¼ qð/Þ; ð84Þ

where q is a smooth function of the state variable /. The function q is
assumed to have the following behavior:

dq=d/> 0 /o � /< /� ðhardening branchÞ; ð85aÞ
dq=d/< 0 /> /� ðsoftening branchÞ; ð85bÞ
qð/!1Þ ¼ 0 ðinterface fail; yield surface collapseÞ; ð85cÞ
qð/oÞ ¼ 0 ð85dÞ

where /o denotes the state of a undamaged interface with no defor-
mation. Since q(/o)¼ 0, the cohesive zone front does not exist.

Using Eq. (55a) we again get Eq. (55b); combining with the yield
condition Eq. (84), _kk is found to be

_kk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
c
_dd2
1 þ s2

c
_dd2
2

q
2
ffiffiffiffiffiffiffiffiffiffi
qð/Þ

p ð86Þ

and

_// ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_dd2
1 þ _dd2

2

q
H /; hð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_dd2
1 þ _dd2

2

q
gðhÞ/
dcod

; ð87Þ

with g(0)¼ 1. As an example, consider

q /ð Þ ¼ /� 1

/2
; ð88Þ

where /�/o¼ 1. If the interface fails under Mode I condition, then

T1 ¼ rc

ffiffiffiffiffiffiffiffiffiffiffiffi
/� 1

p

/
; ð89aÞ

where
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/ ¼ eDðtÞ=dcod : ð89bÞ

The work to fail a unit area of the interface in tension is

WI ¼
Z 1

0

T1dD ¼ rcdcod

Z 1

0

e�g
ffiffiffiffiffiffiffiffiffiffiffiffiffi
eg � 1

p
dg ¼ p

2
rcdcod: ð90Þ

The solution for proportional loading can also be found. The state vari-
able evolves in the same way, i.e.,

/ ¼ e
ffiffiffiffiffiffiffiffi
1þb2

p
gðhÞDðtÞ=dcod : ð91Þ

The traction T1 is found to be

T1 ¼ rcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ðs2

cb
2=r2

c Þ
q ffiffiffiffiffiffiffiffiffiffi

q /ð Þ
p

¼ rcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ðs2

cb
2=r2

c Þ
q ffiffiffiffiffiffiffiffiffiffiffiffi

/� 1
p

/
; ð92Þ

where / is given by Eq. (91) and T2 can be found from Eq. (65). The
work to fail an interface under proportional loading is:

W ¼
Z 1

o

T1dd1 þ T2dd2 ¼ ð1 þ b2s2
c

r2
c

Þ
Z 1

o

T1dD

¼ rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ðs2

cb
2=r2

c Þ
q Z 1

0

ffiffiffiffiffiffiffiffiffiffi
q /ð Þ

p
d/ ¼ WI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ðs2

cb
2=r2

c Þ
q

:

ð93Þ

4.4. Work and Loading History

The work to fail or to deform an interface is history-dependent. This
can be seen by computing the work need to deform a unit area of
the interface from d1¼ d2¼ 0 to d1¼D1 and d2¼K2¼ bD1 using two
loading histories. In the first loading path we start by opening the
interface, then apply a slip displacement [see Eqs. (75a,b)]. The work
done along this path is:

2rcdcodð1 � e�D1=2dcodÞ þ 2scdcod
gðp=2Þ e

�D1=2dcodð1 � e�K2=2dcodÞ

¼ WI þ ðWII �WIÞe�D1=2dcod �WIIe
�ð1þ bj jÞD1=2dcod :

ð94Þ

On the other hand, if the loading is proportional, then the work
done on a unit interfacial area from (0, 0) to (D1, K2) is
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W ¼
ZD1

o

T1dd1 þ
ZK2

o

T2dd2 ¼ ð1 þ b2s2
c

r2
c

Þ
ZD1

o

T1dd1

¼
WI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ðs2

cb
2=r2

c Þ
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ b2

q
gðhÞ

1 � e
�
ffiffiffiffiffiffiffi
1þb2

p
gðhÞD1

2dcod

� �
:

ð95Þ

Thus, the energy dissipated is path dependent.

5. STABILITY OF COHESIVE ZONE INTERFACES

5.1. Stability of Interface in Homogeneous Deformation

Cohesive zone models are commonly used to model growth of preexist-
ing cracks. A much more difficult problem is how these cracks
nucleate. Since an important aspect of cohesive zone models is the
softening of interface, it is natural to study the stability of the defor-
mation of a continuum interface point. In Section 5.2, we show that
interfacial instability leads to crack nucleation (See [80] for a related
treatment.). We start by considering the stability of an interface
undergoing a spatially homogeneous deformation. Let us assume that
the motion of the interface is described by a form of Eqs. (46a,b) where
the fi and h are explicitly independent of rates, i.e.,

Ti ¼ fiðd1; d2; d3;/Þ; ð96aÞ
_// ¼ hðd1; d2; d3;/ÞÞ: ð96bÞ

Consider the special case d2¼ d3¼ 0. Also, assume T2¼T3¼ 0. For
this case, we have:

T ¼ f ðd;/Þ; ð97aÞ
_// ¼ hðd;/Þ; ð97bÞ

where T�T1, f� f1, d� d1. In general, there are many non-trivial spa-
tially homogeneous steady state solutions where d¼ d0 and /¼/0

where d0, /0 are constants. We are interested in the stability of these
steady states.

Figure 10 shows the schematics of the loading device which is repre-
sented by the spring. Here we regard the cohesive zone as a mechan-
ical system and the structure surrounding it as the loading device. For
example, the loading device can be a load cell in series with the
material outside the interface. Since the stiffness of the material

Cohesive Zone Models and Fracture 41

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
9
:
1
7
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



outside the cohesive interface is represented by the spring, we
envision the interface sandwiched between an infinite rigid block
and an infinite rigid substrate.

The equation of motion of the block is:

m€dd ¼ kðD� dÞ � f ðd;/Þ; ð98Þ

where m is the mass of the block per unit contact area, k is the stiff-
ness of the loading device (units of k ¼ force per unit volume), f is
the normal stress acting on the block, and D is the fixed applied
displacement. To study stability of the steady state(do, /o), let

d ¼ do þ e1ðtÞ; ð99aÞ
/ ¼ /o þ e2ðtÞ; ð99bÞ

where jeij<< 1. Substituting Eqs. (99a,b) into Eq. (98) and Eq. (97b)
and expanding about the steady state (do, /o) gives:

m€ee1 ¼ kðD� d0Þ � f ðd0;/0Þ½ 	 � ke1 � f1e1 � f2e2; ð100aÞ
_ee2 ¼ hðd0;/0Þ½ 	 þ h1e1 þ h2e2; : ð100bÞ

where f1 � @f
@d

			
d0;/0

; f2 � @f
@/

			
d0;/0

;h1 � @h
@d

		
d0;/0

;h2 � @h
@/

			
d0;/0

. The terms in

the square brackets in Eqs. (100a,b) are identically zero by assump-
tion, so

m€ee1 ¼ �ke1 � f1e1 � f2e2; ð101aÞ
_ee2 ¼ h1e1 þ h2e2: ð101bÞ

FIGURE 10 (a) A flat interface (not shown) sandwiched between a infinite
rigid block and an infinite rigid substrate; no load is applied to the block. (b)
A fixed vertical displacement is applied to O. The spring represents the stiff-
ness of the loading device and d> 0 is the spatially homogeneous interfacial
displacement.
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The stability of the linear system of ordinary differential Eqs.
(101a,b) can be readily worked out using the Laplace transform. It
depends on the roots of the algebraic equation

ðs� h2Þðms2 þ kþ f1Þ � f2h1 ¼ 0: ð102Þ

The solution of Eqs. (101a,b) is unstable (grows exponentially with
time) if any of the roots of Eq. (102) have positive real parts.

As an example, consider the special case where a potential exists.
For this case, the stability criterion can be obtained formally by setting
h¼ 0 and f independent of / in Eqs. (97a,b). Let f have the shape
shown in Fig. 11 for d> 0.

The stability condition Eq. (102), for this case, reduces to

s ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� kþ f 0ðdoÞð Þ=m

p
: ð103Þ

Note that if d0 ¼ d�0 < d�, then the spatially homogeneous solution
T ¼ r0; d ¼ d�0 is neutrally stable since kþ f 0ðd�0 Þ > 0, where f0 �df=
dd. On the other hand, if

kþ f 0ðdþ0 Þ < 0; ð104Þ

one of the roots has a positive real part, so the spatially homogeneous
solution T ¼ r0; d ¼ dþ0 is unstable. The instability condition Eq. (104)
can be written as

k < kc; ð105Þ

FIGURE 11 A special case of T¼ f(d). The potential function is UðdÞ ¼R d
0 f ðd0Þdd0. Note, for any 0 < r1 � T�, there are two equilibrium interfacial dis-

placements do ¼ d�0 (corresponding to points a (d�0 ), b (dþ0 ) in Fig. 11). The line
tangent to the curve at b has slope f 0ðdþ0 Þ. The stiffness of the loading device is
the dashed line with slope �k.
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where kc � �f 0ðdþ0 Þ is the critical stiffness. Note that kc is an intrinsic
property of the interface. Equation (104) has the following physical
interpretation: homogeneous deformation of the interface is stable if
the loading device is always stiffer than the intrinsic stiffness of the
interface (as defined by the tangent lines in Fig. 11); otherwise, the
interface is unstable for some value of its opening.

A different way to obtain Eq. (105) without using inertia and taking
the formal limit of h! 0 is to introduce some small rate dependence in
the potential model, e.g., assume

T ¼ f ðdÞ þ b _dd; ð106Þ

where b> 0 is a small damping term. Perturbing about the equilib-
rium state T¼ r0, d ¼ dþ0 gives:

kþ f 0ðdþ0 Þ
� �

e1 þ b _ee1 ¼ 0: ð107Þ

As before, the perturbation grows exponentially if kþ f 0ðdþ0 Þ < 0 or
k < �f 0ðdþ0 Þ � kc.

5.2. Stability of Continuous Systems: Crack Nucleation
and Growth

The above analysis suggests that an interface subjected to homo-
geneous deformation can nucleate cracks and these cracks can evolve.
To study this phenomenon, it is necessary to include the elasticity of
the material outside the interface. For simplicity, we restrict our
analysis to potential interface models and assume T2¼T3¼ d2¼ d3¼ 0.
Figure 12 shows the geometry. Let the interface be the xz plane and
the infinitely extended, homogeneous bulk material on both sides of
it be linearly elastic with shear modulus, G, and Poisson’s ratio, v,
respectively. We assume plane strain deformation.

We assume the interface model has the form:

FðT; dÞ ¼ 0 d � 0; ð108Þ

where T¼ r22(x, y¼ 0) and d¼ v(x, y¼ 0þ)� v(x, y¼ 0�). For d> 0, we
assume that Eq. (108) can be solved to give

T ¼ f ðdÞ: ð109Þ

The function f is sketched in Fig. 11. The boundary conditions at
infinity are:

r22ðx; yj j ! 1Þ ¼ r0; r21ðx; yj j ! 1Þ ¼ 0: ð110Þ
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The boundary conditions on the interface are:

r21ðx; y ¼ 0Þ ¼ 0; ð111Þ
T ¼ f ðdÞ: ð112Þ

For ro> rC, where rC is the cohesive stress (see Fig. 11), there exists
a homogenous equilibrium solution which gives non-zero interface
displacement, dþ0 . The horizontal and vertical displacements associa-
ted with these homogeneous solutions are

u0ðx; yÞ ¼
�nr0

2G
x; v0ðx; yÞ ¼

1�nð Þr0

2G yþ dþ0 y > 0
1�nð Þr0

2G y y < 0

(
; ð113aÞ

respectively. The stresses associated with these displacements are
spatially homogeneous. They are:

r0
22ðx; yÞ ¼ ro; r

0
12ðx; yÞ ¼ r0

11ðx; yÞ ¼ 0: ð113bÞ

The normal traction on the interface is ro�To and is related to the
interface displacement dþ0 by Eq. (112), i.e.,

To ¼ f ðdþ0 Þ: ð113cÞ

We now show that this homogenous equilibrium state is in general
unstable to spatial perturbations and will evolve into one of the

FIGURE 12 A cross-section of an infinite block of linear elastic solid
subjected to remote tension. The interface occupies the xz plane.
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infinitely many possible equilibrium states illustrated in Fig. 13.
These bifurcated equilibrium states are possible because the interface
model allows solutions in the form of traction-free cracks and cohesive
zones that can support normal stresses on the interface.

To study stability of the homogenous equilibrium state given by
Eqs. (113a–c) and to find the conditions under which these instabil-
ities occur, we impose a small sinusoidal perturbation of the form

dðx; tÞ ¼ dþ0 þ eðtÞ sin jx j ¼ 2p=k > 0 e << 1; ð114aÞ

on the interface, where t denotes time and k is the wavelength of the
perturbation. To capture stability, we modify our interface model to
Eq. (106). The displacement fields can be written as

v ¼ vo þ vp; ð114bÞ
u ¼ uo þ up; ð114cÞ

where vp and up are the perturbed fields. Also, let rpij denote the stres-
ses associated with the perturbed field. Note that any reasonable
spatial perturbation can be represented by a Fourier sine series so our
approach is quite general. Finally, the symmetry of the problem allows
us to restrict our attention to the upper half plane, y> 0. Note that

r22ðx; y ¼ 0; tÞ ¼ f ðdþ0 þ eðtÞ sinkxÞ
� �

þ b _ddðx; tÞ )
r0

22ðx; y ¼ 0; tÞ þ rp22ðx; y ¼ 0; tÞ ¼
¼ f ðdþ0 Þ þ f1eðtÞ sin kxþ b _eeðtÞ sinkx;

ð115Þ

FIGURE 13 (a) Interface under homogeneous deformation. (b) After pertur-
bation, the homogenous state in (a) evolves into an interface with traction free
cracks, cohesive zone, and intact zones.
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where f1 � f 0ðdþ0 Þ. By Eq. (113c), we have r0
22ðx; y ¼ 0Þ ¼ To ¼

f ðdþ0 Þ, so

Tp � rp22ðx; y ¼ 0; tÞ ¼ f1eðtÞ sin kxþ b _eeðtÞ sin kx: ð116aÞ

The other boundary conditions are

rp22ðx; y ¼ 1; tÞ ¼ rp21ðx; y ¼ 1; tÞ ¼ 0; ð116bÞ
rp12ðx; y ¼ 0; tÞ ¼ 0: ð116cÞ

It can be easily shown that the stress function

v ¼ cðtÞe�jy 1 þ jy½ 	 sin jx; ð117Þ

satisfies the boundary conditions Eqs. (116b,c). According to Eq. (117),
the normal traction on the interface y¼ 0 is

Tp ¼ �j2cðtÞ sin jx: ð118Þ

Substituting Eq. (118) into Eq. (116a), we obtain

�k2cðtÞ ¼ f1eðtÞ þ b _eeðtÞ: ð119Þ

The vertical perturbed elastic displacement can be found using
Eq. (117). It is

vpðx; y; tÞ ¼
2ð1 � nÞ þ jy½ 	

2G
je�jycðtÞ sin jx: ð120Þ

At y¼ 0þ, vp(x, y¼ 0þ, t)¼ dp¼ e(t)sinjx. This fact, together with Eq.
(120), gives

eðtÞ ¼ ð1 � nÞ
G

jcðtÞ: ð121Þ

Substituting Eq. (121) into Eq. (119), we have

f1 þ
Gj

ð1 � nÞ

� �
cðtÞ þ b _ccðtÞ ¼ 0: ð122Þ
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Equation (122) implies that c grows exponentially fast if

Gj
ð1 � nÞ < �f1 ¼ �f 0ðdþ0 Þ: ð123Þ

Recall �f 0ðdþ0 Þ > 0 (see Fig. 11). Equation (123) implies that the
homogeneous solution is unstable if

k > kc �
2p

ð1 � nÞ
G

f 0ðdþ0 Þ
		 		 : ð124Þ

Thus, all wavelengths above kcare unstable. Since perturbations in
general contain all wavelengths (e.g., white noise), interfaces that
soften are invariably unstable.

6. SUMMARY AND DISCUSSIONS

The cohesive zone approach to modeling the mechanics of fracture,
while introduced early in the development of the subject, has been
used much more widely over the last 15 years. From the perspective
of physical modeling, it provides a natural link between micromecha-
nics and continuum scale modeling. It is also convenient for computa-
tional modeling of fracture since cohesive zone models are readily
implemented as cohesive elements in finite element analysis.

Despite their widespread use, insufficient attention has been paid
to examine systematically different classes of cohesive zone models
from the view point of their representation of interfacial constitutive
behavior, and this has been the topic of this paper. In particular, with
only a few references to specific material models, we lay out different
classes of cohesive interfacial models, to a significant extent in analogy
with models for bulk elastic and inelastic behavior of materials. The
basic kinematic quantity is the interfacial opening displacement vec-
tor, which is defined as the difference of separation between remote
points on either side of the interface and the value of separation
between equivalent points in a material with the same bulk properties
but without the damaging interface. The cohesive zone model relates
these kinematic quantities and its rates of change to the traction act-
ing on the interface. We show that if the interface can support some
traction without opening, then a cohesive zone tip can exist. Similarly,
existence of a crack-tip is contingent on there being a finite opening at
which tractions reduce to zero.

One class of cohesive zone models is such that tractions can be
derived as gradients of a potential, defined as a function of opening
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displacements. We consider a few examples and show that models
with an initial hardening branch of the traction-displacement relation
can generally suffer from unphysical material softening and interpen-
etration. Often, potential-based cohesive zone models have a
phase-angle-independent work of opening the interface. We show that
while it is possible to construct potentials with directionally dependent
fracture energy, such models violate steady state crack growth under
small-scale yielding conditions. Instead, we show that anisotropy can
be built in by working with a conventional potential and adding a
direction-dependent condition that cuts it off at a critical crack open-
ing displacement. We examine conditions under which multiple crack
and cohesive fronts can exist.

Our discussion of general rate-dependent cohesive zone models is
very cursory, but we do examine rate-independent history-dependent
models in some detail. Specifically, we develop them in analogy with
classical plasticity by defining a yield surface in the space of interfacial
tractions, which is used to derive opening displacements. These are
examined in a few simple cases of loading paths.

In the last section of this work we consider the stability of cohesive
zone interfaces. Our example is based on an earlier work [20] and is
restricted to interfaces in homogeneous linear elastic solids and for a
simple class of cohesive zone models. However, many of the basic ideas
can be extended to bimaterial systems and to more complicated
cohesive zone models.

ACKNOWLEDGMENT

C. Y. Hui enjoyed the many discussions with S. Vavasis and K. Papou-
lia of University of Waterloo while both of them were at Cornell. Rong
Long acknowledges the support from Materials and Surface Engineer-
ing program, CMMI, National Science Foundation (Grant no:
CMMI-0900586). C. Y. Hui and A. Jagota acknowledge the support
from the Department of Energy, Office of Basic Science, Division of
Material Science and Engineering (Grant no: DE-FG02-07ER46463).

REFERENCES

[1] Barenblatt, G. I., Advances in Applied Mechanics 7, 56–129 (1962).
[2] Cottrell, A. H., Mechanics of fracture, in Tewksbury Symposium of Fracture, C. J.

Osborn, ed. (University of Melbourne, Australia, 1963), pp. 1–27.
[3] Bilby, B. A., Cottrell, A. H., and Swinden, K. H., Proc. Roy. Soc. London, Ser A 272,

304–314 (1963).

Cohesive Zone Models and Fracture 49

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
9
:
1
7
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



[4] Knauss, W. G., On the steady propagation of a crack in a viscoelastic sheet: Experi-
ments and analysis, in Deformation and Fracture of High Polymers, H. H. Kausch,
J. A. Hassell and R. I. Jaffee (Eds.) (Plenum Press, New York, 1974), pp. 501–541.

[5] Schapery, R. A., Int. J. Fracture 11, 141–159 (1975).
[6] Hui, C. Y., Xu, D. B., and Kramer, E. J., J. Appl. Phys. 72, 3294–3304 (1992).
[7] Xu, D. B., Hui, C. Y., and Kramer, E. J., J. Appl. Phys. 72, 3305–3316 (1992).
[8] Maugis, D., Colloid Interface Sci. 150, 243–267 (1992).
[9] Lin, Y. Y. and Hui, C. Y., J. Polym. Sci.: Part B: Polymer Physics 40, 772–793

(2002).
[10] Johnson, K. L., in Microstructure and Microtribology of Polymer Surfaces, V. V.

Tsukruk and K. J. Wahl (Eds.) (American Chemical Society, Washington, DC,
2000), p. 24.

[11] Barthel, E. and Haiat, G., Langmuir 18, 9362–9370 (2002).
[12] Ruina, A. L., J. Geophys. Res. 88, 10359–10370 (1983).
[13] Ruina, A. L., Constitutive relations for frictional slip, in Mechanics of Geomaterials,

Z. P. Bazant (Ed.) (John Wiley, New York, 1984), pp. 169–187.
[14] Dieterich, J. H., Constitutive properties of faults with simulated gouge, in Mechan-

ical behavior of Crustal Rocks, in Geophys. Monogr. Ser., N. L. Carter, M.
Friedman, J. M. Logan and D. W. Stearns (Eds.) (AGU, Washington, DC, 1981),
Vol. 24, pp. 103–120.

[15] Lin, Y. Y., Hui, C. Y., and Jagota, A., Colloid Interface Sci. 237, 267–282 (2001).
[16] Hui, C. Y., Ruina, A., Creton, C., and Kramer, E. J., Macromolecules 25, 3948–3955

(1992).
[17] Sha, Y., Hui, C. Y., Ruina, A. L., and Kramer, E. J., Acta Mater. 45, 3555–3563

(1997).
[18] Wang, W.-C. V. and Kramer, E. J., J. Material Science 17, 2013–2026 (1982).
[19] Ungsuwarungsri, T. and Knauss, W. G., J. Applied Mechanics 110, 44–51 (1988).
[20] Hui, C. Y., Lagoudas, D., and Ruina, A. L., Constitutive models for crazes and their

effects on crack growth in glassy polymers, in Constitutive Modeling for
Non-Traditional Materials, V. K. Stokes and D. Krajcinovic (Eds.) (ASME, New
York, 1987), pp. 85–115.

[21] Rahul-Kumar, P., Jagota, A., Bennison, S. J., and Saigal, S., Intl. J. Solids and
Structures 37, 1873–1897 (2000).

[22] Jagota, A., Bennison, S. J., and Smith, C. A., Intl. J. Fracture 104, 105–130 (2000).
[23] Ghatak, A., Vorvolakos, K., She, H., Malotky, D., and Chaudhury, M. K., J. Phys.

Chem. B 104, 4018–4030 (2000).
[24] Bao, G. and Suo, Z., Appl. Mech. Rev. 24, 355–366 (1992).
[25] Hutchinson, J. W. and Jenson, H. M., Mech. Mater. 9, 139–163 (1990).
[26] Marshall, D. B., Cox, B. N., and Evan, A. G., Acta Metall. 35, 2607–2619 (1985).
[27] Rose, L. R. F., J. Mech. Phys. Solids 35, 383–405 (1987).
[28] McCartney, L. N., Proc. R. Soc. Lond. A. 409, 329–350 (1987).
[29] Needleman, A., J. Applied Mechanics 54, 525–531 (1987).
[30] Needleman, A., J. Mech. Phys. Solids 38, 289–324 (1990).
[31] Suo, Z., Ortiz, M., and Needleman, A., J. Mech. Phys. Solids 40, 613–640 (1992).
[32] Kogan, L., Hui, C. Y., and Ruina, A. L., Macromolecules 29, Part I, 4090–4100; Part

II 4101–4106 (1996).
[33] Horowitz, F. G. and Ruina, A., J. Geophysical Research 94, 10279–10298 (1989).
[34] Rice, J. R. and Ruina, A., J. Applied Mechanics 50, 343–349 (1983).
[35] Ortiz, M., Leroy Y., and Needleman, A., Computer Methods in Applied Mechanics

and Engineering 61, 189–214 (1987).
[36] Tvergaard, V. and Hutchinson, J. W., J. Mech. Phys. Solids 40, 1377–1397 (1992).

50 C. Y. Hui et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
9
:
1
7
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



[37] Tvergaard, V. and Hutchinson, J. W., J. Mech. Phys. Solids 41, 1119–1135 (1993).
[38] Belytchko, T., Fish, J., and Englemann, B. E., Computer Methods in Applied Meha-

nics and Engineering 70, 59–89 (1988).
[39] Olofsson, T. H., Klisinski, M., and Nedar, P., Inner softening bands: a new approach

to localization in finite elements, in Computation Modeling of Concrete Structures,
H. Mang, N. Bicanic and R. de Borst (Eds.) (Pineridge Press, Swansea, 1994), pp.
373–382.

[40] Xu, X-P. and Needleman, A., J. Mech. Phys. Solids 42, 1397–1434 (1994).
[41] Chaboche, J. L., Girard, R., and Levasseur, P., Int. J. Damage Mechanics 6,

220–257 (1997).
[42] Jirasek, M. and Zimmermann, T., Intl. J. Numer. Meth. Engng 50, 1269–1290

(2001).
[43] Rahul-Kumar, P., Jagota, A., Bennison, S. J., Saigal, S., and Muralidhar, S., Acta

Materialia 47, 4161–4169 (1999).
[44] Camacho, G. T. and Ortiz, M., Intl. J. Solids and Structures 33, 2899–2938 (1996).
[45] Pandolfi, A., Krysl, P., and Ortiz, M., Intl. J. Fracture 95, 279–297 (1999).
[46] Needleman, A., Computational Mechanics 19, 463–469 (1997).
[47] Falk, M. L., Needleman, A., and Rice, J. R., Jounal de Physique IV 11, pr5-43-

pr5-50 (2001).
[48] Ortiz, M. and Pandolfi, A., Int. J. Numer. Meth. Engng. 44, 1269–1282 (1999).
[49] Ortiz, M. and Suresh, S., J. Applied Mechanics 60, 77–84 (1993).
[50] Zhang, X., Mai, Y. W., and Jeffrey, R. G., Int. J. Solids and Structures 40, 5819–

5837 (2003).
[51] Yang, Q. D., Thouless, M. D., and Ward, S. M., J. Adhesion 72, 115–132 (2000).
[52] Yang, Q. D., Thouless, M. D., and Ward, S. M., Intl. J. Solids Structure 38, 3251–

3262 (2001).
[53] Andena, L., Rink, M. and Williams, J. G., Engineering Fracture Mechanics 73,

2476–2485 (2006).
[54] Zhou, B., Thouless, M. D., and Ward, S. M., Int. J. Fracture 136, 309–326 (2005).
[55] Hill, J. C., Bennison, S. J., Klein, P. A., Foulk, J. W., Jagota, A., and Saigal, S., Int.

J. Fracture 119, 365–386 (2003).
[56] Hui, C. Y., Phoenix, S. L., Ibnabdeljalil, M., and Smith, R. L., J. Mech. Phys. Solids

43, 1551–1585 (1995).
[57] Kramer, E. J., Microscopic and molecular fundamentals of crazing, in Advances in

Polymer Science, H. H. Kausch (Ed.) (Springer Berlin, Heidelberg, 1983), Vol. 52=
53, pp. 1–56.

[58] Kramer, E. J. and Berger, L. L., Fundamental Process of Craze Growth and
Fracture, in Advances in Polymer Science, H. H. Kausch (Ed.) (Springer Berlin,
Heidelberg, 1990), Vol. 91=92, pp. 1–67.

[59] Brown, H. R., Macromolecules 24, 2752–2756 (1991).
[60] Hui, C. Y. and Kramer, E. J., Polymer Engineering and Science 35, 419–425 (1995).
[61] Baljon, A. R. C. and Robbins, M. O., Macromolecules 34, 4200–4209 (2001).
[62] Hui, C. Y. and Kramer, E. J., Molecular weight dependence of the fracture tough-

ness of a craze growing into a polymer glass, in ASME Symposium volume: Use of
Plastics and Plastic Composites: Mechanics Issues, V. K. Stokes (Ed.) (1993), pp.
309–325.

[63] Jirasek, M., Computer methods in Applied Mechanics and Engineering 188, 307–
330 (2000).

[64] Chaudhury, M. K. and Whitesides, G. M., Langmuir 7, 1013–1025 (1991).
[65] Tang, T., Hui, C. Y., Jagota, A., and Chaudhury, M. K., J. Adhesion 82, 671–696

(2006).

Cohesive Zone Models and Fracture 51

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
9
:
1
7
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



[66] Lake, G. J. and Thomas, A. G., Proc. R. Soc. London, A. 300, 108–119 (1967).
[67] Lauterwasser, B. D. and Kramer, E. J., Phil. Mag. A39, 469–495 (1979).
[68] Elices, M., Guinea, G. V., Gomez, J., and Planas, J., Engineering Fracture

Mechanics 69, 137–163 (2002).
[69] Fager, L. O., Bassani, J. L., Hui, C. Y., and Xu, D. B., Intl. J. Fracture 52, 119–144 (1991).
[70] Evans, A. G., Ruhle, M., Dalgleish, B. J., and Charalambides, P. G., Material

Science and Engineering A126, 53–64 (1990).
[71] Liechti, K. M. and Chai, Y. S., J. Applied Mechanics 58, 680–687 (1991).
[72] Zehnder, A. T. and Hui, C. Y., Scripta Mater. 42, 1001–1005 (2000).
[73] Yang, Q. D. and Thouless, M. D., Int. J. Fracture 110, 175–187 (2001).
[74] Park, K., Paulino, G. H., and Roesler, J. R., J. Mech. Phys. Solids 57, 891–908

(2009).
[75] Rice, J. R., J. of Applied Mechanics 55, 98–103 (1988).
[76] Fey and Hui, C. Y., A cohesive zone model for a crack lying along a bimaterial Inter-

face, in Damage Mechanics in Composites, D. H. Allen and J. W. Ju (Eds.) (ASME
Int. Mechanical Engineering Congress and Exposition, ASME Winter Annual
Meeting, Nov. 6–11, 1994), pp. 37–55.

[77] ABAQUS1 6.9, Simulia, Dassault Systemes, Rising Sun Mills, Providence,
RI, <http://www.simulia.com/products/abaqus_fea.html> (accessed December 2010)

[78] Camanho, P. P., Davila, C. G., and de Moura, M. F., Journal of Composite Materials
37, 1415–1438 (2003).

[79] Turon, A., Camanho, P. P., Costa, J., and Davila, C. G., Mechanics of Materials 38,
1072–1089 (2006).

[80] Gao, Y. F. and Bower, A. F., Modelling and Simulation in Materials Science and
Engineering 12, 453–463 (2004).

APPENDIX

We show that the normality rule can be used to generate traction that
satisfies Eq. (48). Note that _ddi ¼ _kk@F=@Ti implies that

h ¼ tan�1
_dd2

_dd1

 !
¼ tan�1 p2ð/;T1;T2Þ

p1ð/;T1;T2Þ

� �
; ðA1Þ

where pi� @F=@Ti. However, the pi’s are not independent, since they
are constrained by the equation

@p1=@T2 � @p2=@T1 ¼ 0: ðA2Þ
In general, Eq. (A2) allows one to solve T1 in terms of T2 and /, i.e.,

T1¼ q(T2, /) for some function q. Substituting this into Eq. (A1)
results in a nonlinear equation of the form:

h ¼ Nð/;T1Þ: ðA3Þ
Assuming that this equation is invertible, we haveT1¼ f1(/, h),

which is essentially Eq. (48). In exactly the same way one can
showT2¼ f2(/, h).
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